

DRIVE CHAIN ATTACHMENT CHAIN

/// Innovation in Motion

CATALOGUE 1-2 DRIVE CHAIN

	Classific	cation	Chain Series	Tsubaki Chain Type	Features				
	0		C	BS GT4 Winner	Superior Performance Chain in				
	Gene	eral	Standard Roller Chain Series	ANSI G7	both BS/DIN and ANSI				
			LAMBDA Series	BS LAMBDA	Self Lube Chain;				
	Lube-f	ree	LAMBDA Series	ANSI LAMBDA	Maintenance Free				
	Heavy Duty		X-LAMBDA Series	BS X-LAMBDA	Self Lube under Severe Dust Conditions				
			Hammy Duty Savina	ANSI H	Higher Fatigue Strength				
			Heavy Duty Series	ANSI HT	Anti-Shock Performance				
				ANSI SUPER	Better Fatigue Strength				
			SUPER Series	ANSI SUPER-H	Better Fatigue Strength and Anti-Shock Performance				
				ANSI ULTRA SUPER	Ultimate Strength				
			NP Series	BS (LAMBDA) NP	Chining Mindral Distant Days				
			INP Series	ANSI (LAMBDA) NP	Shining Nickel Plated Parts				
Anti Corrosion	Corrosion Protected	Carbon Steel Base	N.E.P. Series	BS N.E.P. BS LAMBDA N.E.P. ANSI N.E.P. ANSI LAMBDA N.E.P.	Environmental Friendly Corrosion Protection				
infi (SS Series	BS SS	Stainless Steel SUS304				
4		Stainless	55 Series	ANSI SS	Excellent Corrosion Resistant				
	Corrosion Resistant	Steel	AS Series	ANSI AS	Higher Maximum Allowable Load				
	Resistant	Base	PC Series	BS PC	SUS304+Engineering Plastic Inner Link;				
			PC Series	ANSI PC	Lube Free				
			Leaf Chain Series	ANSI AL	Ideally Suited for Lifting Applications				
	Specialty	Chain	Lear Chain Series	ANSI BL	Ideally Suited for Lifting Applications				
			Low Noise Series	ANSI SNS	Unique Spring Roller for Noise Reduction				

	Classific	ation	Chain Series	Tsubaki Chain Type	Features		
			BS Standard Attachment	BS Single Pitch Standard	All Major Chain Attachments Available		
			Chain Series	BS Single Pitch RF	Straight Side Plate for Direct Conveying		
				ANSI Single Pitch Standard	All Major Chain Attachments Available		
	Gene	ral		ANSI Single Pitch HP	Hollow Pin Chain		
			ANSI Standard Attachment Chain Series	ANSI Single Pitch CU	Curved Chain (Side Bow Chain)		
				ANSI Double Pitch Standard	For Longer Conveyor Lines		
				ANSI Double Pitch HP	Hollow Pin Chain		
			BS LAMBDA Attachment	BS Single Pitch LAMBDA	Self Lube, Maintenance Free		
			Chain Series	BS Single Pitch LAMBDA RF	Self Lube, Maintenance Free		
	Lube-F	ree	ANICHAA ARDA AII	ANSI Single Pitch LAMBDA	Self Lube, Maintenance Free		
			ANSI LAMBDA Attachment Chain Series	ANSI Single Pitch LAMBDA HP	Self Lube, Hollow Pin Chain		
				ANSI Double Pitch LAMBDA	Self Lube, Maintenance Free		
	Corrosion Protected	Carbon Steel Base	N.E.P. Attachment Chain Series	BS Single Pitch N.E.P.	Environmental Friendly Corrosion Protection		
				BS Single Pitch SS	Stainless Steel SUS304		
lo lo				ANSI Single Pitch SS	Stainless Steel SUS304		
Anti Corrosion			SS Attachment Chain Series	ANSI Single Pitch SS HP	SUS304, Hollow Pin		
ŝ	Corrosion	Stainless Steel Base	Chain Conso	ANSI Double Pitch SS	SUS304, Double Pitch		
Ani	Resistant	0.00. 2000		ANSI Double Pitch SS HP	SUS304, Double Pitch, Hollow Pin		
			PC Attachment	BS Single Pitch PC	SUS304+Engineering Plastic Inner Link		
			Chain Series	ANSI Single Pitch PC	SUS304+Engineering Plastic Inner Link		
		Plastic Base	P Attachment Chain Series	ANSI Single Pitch P	Engineering Plastic Block+SUS304 Pins		

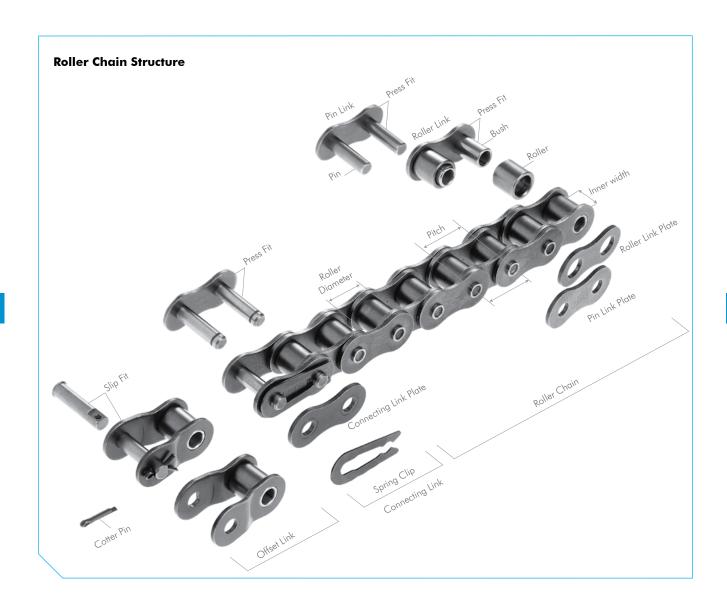
Classi	ification	Chai	n Series	Tsubaki Chain Type	Features
	Classification			ANSI LAMBDA Heavy Duty	Self Lube, Increased Tensile Strength
				ANSI X-LAMBDA	Self Lube under Severe Dust Conditions
		Lube-Free Se	eries	ANSI LAMBDA DKF	High Temperature up to 230°C
ANICI D.	rive Chain			ANSI LAMBUA DKF	Food Grade
ANSI DI	rive Chain			ANSI TI	All Titanium
			esistant Series	ANSI PC-SY	Superior Chemical Resistance
				ANSI NS	Ultimate Corrosion Protection, Heat Application
		Cold Resista	nt Series	ANSI KT	Low Temperature Freezing Application down to -60°C
			ries	ANSI Single Pitch Standard	Flexible Design Capability
			ries	ANSI Double Pitch Standard	Trexible Design Capability
				ANSI Single Pitch LAMBDA	Self Lube Chain
			Standard	ANSI Single Pitch LAMBDA CU	Curved Chain
				ANSI Double Pitch LAMBDA	Self Lube Chain
مهد ۱۵۱۸۸	harant Chain	Lube-Free Series		ANICI Cincle Bitch I AMADDA CVE	High Temperature up to 230°C
AINSI AIIUC	ANSI Attachment Chain		Special	ANSI Single Pitch LAMBDA CKF	Food Grade
			Environments	ANSI Double Pitch LAMBDA CKF	High Temperature up to 230°C
				ANSI Double HICH LAWIDDA CKI	Food Grade
				ANSI Single Pitch SS	SUS304, Excellent Corrosion Resistant
			esistant Series	ANSI Single Pitch SS CU	SUS304, Curved Chain
				ANSI Double Pitch SS	SUS304, Excellent Corrosion Resistant
		Standard Se	ries	RF	Wide Variation
		Low Mainter	ance Series	RF LAMBDA	Self Lube, Direct Conveying
	Tsubaki Standard	LOW Mainter	idirec deries	BR Bearing Roller	Low Friction of Roller, Save Energy
		Deep Link Se	eries	RFD	Ideal for Direct Conveying
		Free Flow Se	eries	VR Double Plus	Chain Speed can be Reduced 2,5 Times, Save Energy
		Standard Se	rios	М	Wide Variation
Conveyor Chain		Sidiladia se	1103	FV	vvide variation
		Hollow Pin S	Sarias	MC	Hollow Pin
	DIN Standard	Tiollow Till C	iciici	FVC	Trollow Till
	Dii v Sidridara	Deep Link Se	eries	MT	Ideal for Direct Conveying
		Boop Link of	51103	FVT	lacar for Brider Corneying
		Scraper Seri	es	TFM	Scraping Attachments
		ociapei seni	03	TF	ocraping / indefinitions

ntroduction Roller Chain8	
- Glossary	3
- Roller Chain Structure)
S LAMBDA Lube Free Roller Chain12	2
- BS LAMBDA Lube Free Roller Chain - Drawings and Dimensions	}
SS X-LAMBDA Lube Free Roller Chain	ŀ
- BS X-LAMBDA Lube Free Roller Chain - Drawings and Dimensions	5
S Roller Chain GT4 Winner	>
- BS GT4 Winner - Drawings and Dimensions	7
S Chain for Corrosive Environments	3
- BS PC Chain - Drawings and Dimensions)
- BS SS Chain - Drawings and Dimensions)
- BS LAMBDA N.E.P. Chain - Drawings and Dimensions	İ
- BS N.E.P. Chain - Drawings and Dimensions	2
- BS NP Chain - Drawings and Dimensions	}
NSI LAMBDA Lube Free Roller Chain24	ŀ
- ANSI LAMBDA Lube Free Roller Chain - Drawings and Dimensions25	5
NSI G7 Standard Roller Chain	>
- ANSI G7 Standard Roller Chain - Drawings and Dimensions	7
NSI Chain for Corrosive Environments28	3
- ANSI PC Chain - Drawings and Dimensions	;
- ANSI SS Chain - Drawings and Dimensions)
- ANSI AS Chain - Drawings and Dimensions	ļ

	- ANSI LAMBDA N.E.P. Chain - Drawings and Dimensions	
	- ANSI N.E.P. Chain - Drawings and Dimensions	
	- ANSI NP Chain - Drawings and Dimensions	
NSI H	Heavy Duty Roller Chain	
	- H Series - Drawings and Dimensions	
	- HT Series - Drawings and Dimensions	
	- SUPER Series - Drawings and Dimensions.	
	- SUPER-H Series - Drawings and Dimensions	
	- ULTRA SUPER Series - Drawings and Dimensions	40
NSI L	ow Noise Roller Chain	41
	- ANSI SNS Chain - Drawings and Dimensions	42
NSI L	eaf Chain	43
	- AL Type - Drawings and Dimensions.	44
	- BL Type - Drawings and Dimensions.	

Note:

Chains which are included in this catalogue are available from stock, with the exception of the chains of which the Tsubaki chain number is indicated with gray characters.


ntroduction Attachment Chain	
- Attachment Chain Structure	47
- Chain Types	51
- Attachments	51
- Chain Length Tolerance	53
- Match & Tag Service: High Accuracy, Narrow Tolerance Service	53
- Local Assembly Service	54
3S LAMBDA Lube Free Attachment Chain	55
- BS Single Pitch LAMBDA Chain - Drawings and Dimensions	56
- BS Single Pitch LAMBDA RF Chain - Drawings and Dimensions	57
3S Standard Attachment Chain	58
- BS Single Pitch Standard Chain - Drawings and Dimensions	59
- BS Single Pitch RF Chain - Drawings and Dimensions	60
3S Attachment Chain for Corrosive Environments	61
- BS Single Pitch PC Chain - Drawings and Dimensions	62
- BS Single Pitch SS Chain - Drawings and Dimensions	63
- BS Single Pitch N.E.P. Chain - Drawings and Dimensions	64
ANSI LAMBDA Lube Free Attachment Chain	65
- ANSI Single Pitch LAMBDA Chain - Drawings and Dimensions	66
- ANSI Single Pitch LAMBDA Hollow Pin (HP) Chain - Drawings and Dimensions	67
- ANSI Double Pitch LAMBDA Chain - Drawings and Dimensions	68
ANSI Standard Attachment Chain	69
- ANSI Single Pitch Standard Chain - Drawings and Dimensions	70
- ANSI Single Pitch Hollow Pin (HP) Chain - Drawings and Dimensions	71

	- ANSI Single Pitch Curved (CU) Chain - Drawings and Dimensions
	- ANSI Double Pitch Standard Chain - Drawings and Dimensions
	- ANSI Double Pitch Hollow Pin (HP) Chain - Drawings and Dimensions
ANSI A	ttachment Chain for Corrosive Environments
	- ANSI Single Pitch P Chain - Drawings and Dimensions
	- ANSI Single Pitch PC Chain - Drawings and Dimensions
	- ANSI Single Pitch SS Chain - Drawings and Dimensions
	- ANSI Single Pitch SS Hollow Pin (HP) Chain - Drawings and Dimensions
	- ANSI Double Pitch SS Chain - Drawings and Dimensions
	- ANSI Double Pitch SS Hollow Pin (HP) Chain - Drawings and Dimensions
Attachi	ment Chain Application Check Sheet83
Attachn	nent Chain Layout Sheet84
Temper	rature Selection Method
Corrosi	on Resistance Guide
Genera	Il Terms and Conditions of Sale Tsubakimoto Europe B.V
For Safe	e Use

Note

Chains which are included in this catalogue are available from stock, with the exception of the chains of which the chain number is indicated with gray characters.

INTRODUCTION TO ROLLER CHAIN

Roller Chain Structure

1. Three Basic Dimensions

Pitch, Roller Diameter and Inner Width are known as the "Three Basic Dimensions of Roller Chain." When these three dimensions are identical, roller chains and sprockets are dimensionally compatible.

2. Basic Parts Link Plate

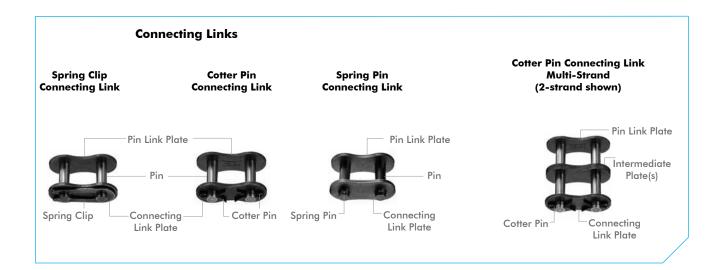
The plate is the component that bears the tension placed on the chain. Usually this is a repeated loading, sometimes accompanied by shock. Therefore, the plate must not only have great static tensile strength, it must also hold up to the dynamic forces of load and shock.

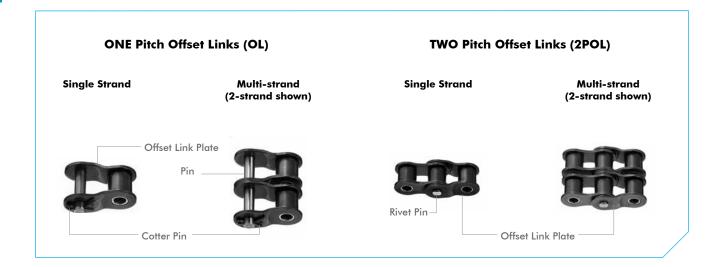
Pin

The pin is subject to shearing and bending forces transmitted by the plate. At the same time, it forms a load-bearing part (together with the bush) when the chain flexes during sprocket engagement. Therefore, the pin needs high tensile and shear strength, resistance to bending, and must also have sufficient endurance against shock and wear.

Bush

The bush is subject to complex forces from all parts, especially from the repetition of shock loads when the chain engages the sprocket. Therefore, the bush needs extremely high shock resistance. In addition, the bush forms a load-bearing part together with the pin and as such requires great wear resistance.


Roller


The roller is subject to impact load as it mates with the sprocket teeth during engagement of the chain with the sprocket. After engagement, the roller changes its point of contact and balance. It is held between the sprocket teeth and bush, and moves on the tooth face while receiving a compression load. Therefore, it must be resistant to wear and still have strength against shock, fatigue and compression. (RS25 and RS35 are bush chains and do not have rollers).

Roller Link

Two bushes are press fit into two roller link plates and rollers are

INTRODUCTION TO ROLLER CHAIN

inserted to allow rotation around the outside of the bushes during operation. This is the same for single and for multi strand chains.

Pin Link and Intermediate Plate

The pin link consists of two pins that have been press fit into two pin link plates. In case of multi-strand roller chain up till size 08B, an intermediate plate is added to the pin link. In case of multi-strand roller chain above size 08B, two intermediate plates are added to the pin link. The intermediate plates are slip fit for standard roller chain and press fit for SUPER roller chain.

3. Assembly Parts

Roller chains are usually made up of a number of inner and outer links in an endless formation. Although offset links can be used when there is an odd number of links in the roller chain, it is better to use a design that requires an even number of links. If an odd number of links cannot be avoided, it is recommended to use a two-pitch offset link in stead of a one-pitch offset link. As it is riveted into the chain, a two-pitch offset link has a 100% (applicable to ANSI chain) Maximum Allowable Load, where as the one-pitch offset link has a Maximum Allowable Load of 65% (applicable to ANSI chain).

Connecting Links

There are three types of connecting links: spring clip connecting link, cotter pin connecting link and spring pin connecting link.

It's common to use slip fit spring clip connecting links for small size roller chains. Cotter pin and spring pin connecting links are used for large size roller chains and on customer request.

Offset Links

An offset link is used when an odd number of chain links is required. Different types are available:

One pitch offset link (OL).

The pin and two plates are slip fit. The fatigue strength is 35% (applicable to ANSI chain) lower than the chain itself.

Two pitch offset link (2POL).

Two pitch offset links are the combination of a roller link and an offset link connected with a rivet pin. Please refer to the dimension tables for roller chain types and sizes suitable for offset links.

BS LAMBDA LUBE FREE ROLLER CHAIN

LAMBDA Chains were the first in the industry to use a special oil impregnated bush. Since their launch in 1988, they have been adopted for diverse industries and applications, and their performance has been highly rated. It has a wide line-up of lube-free, long life products that help customers reduce costs.

Technical Evolution

As a pioneer in the lube-free chain market, TSUBAKI will reveal some of the key elements behind BS LAMBDA's outstanding performance:

Sintered Oil Impregnated Bush

The microscopic pores in the seamless sintered bush are vacuum filled with high performance lubricant. The upgraded bush design provides a 50% increase in wear-life performance.

* Average increase compared to the previous generation of Lambda chain.

Special Coated Pin

The special coating on the pin surface enhances the long term internal lubrication.

Centre Sink Rivet

The unique centre sink pin design offers easy chain disassembly and the markings on the rivet head will identify pin rotation.

Ring Coin

The patented Ring Coin connecting link ensures that the chain can be specified up to its full chain capacity.

Special Environments

TSUBAKI BS LAMBDA has outstanding performance in temperatures up to $+150^{\circ}$ C.

For temperatures above $+150^{\circ}\text{C}$: Due to the special NSF-H1 certified lubrication impregnated bushes, TSUBAKI BS LAMBDA KF Series is usable in a wide temperature range (from -10°C to $+230^{\circ}\text{C}$), and for food product applications while at the same time being kind to the environment.

Please consult TSUBAKI for more detailed information.

Advantages

TSUBAKI has enhanced the BS LAMBDA with the following advantages:

Save Maintenance Costs

No expensive labour costs as it is not required to manually lubricate this chain.

Save Purchasing Costs

Lower frequency of purchasing due to the high quality of the chain and its long economic life. No purchasing of lubricants or lubrication systems necessary.

Higher Productivity

No unforeseen downtime due to chain breakdown. Less time required for maintenance and therefore more time for production.

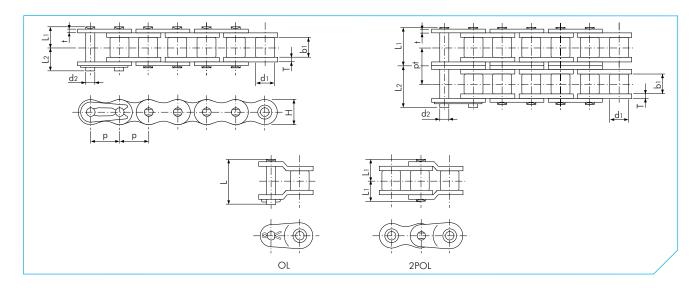
Environmental Friendly

Applications run clean thus reducing the risk of contaminating products, machines, floor etc.

Inter-Changeability

Chains

BS LAMBDA Chains are fully interchangeable with standard BS roller chains.


Sprockets:

Standard BS roller chain sprockets can be used. However, due to the extended lifetime of BS LAMBDA chain, TSUBAKI recommends to install sprockets with hardened teeth in every LAMBDA application.

Fig. 10 Basic Construction

BS LAMBDA LUBE FREE ROLLER CHAIN

BS LAMBDA Chain

Dimensions in mm

					Pin				Link Plate					
	Pi	tch	Roller Diameter	Inner Width	Diameter	Length	Length	Leng t h	Thickness	Thickness	Height	Transverse Pitch	Min. Tensile Strength acc. to ISO 606	Approx. Mass
TSUBAKI Chain No.		p	d1	Ь1	d2	Lı	L2	L	Т	t	H (max)	pt	kN	kg/m
RF06B-LM-1 RF06B-LM-2	9.525	(3/8")	6.35	5.72	3.28	6.10 11.20	7.70 12.80	15.10 25.90	1.30	1.00	8.20	10.24	8.9 16.9	0.39 0.75
RS08B-LM-1 RS08B-LM-2	12.70	(1/2")	8.51	7.75	4.45	8.40 15.30	10.00 16.90	18.60 34.50	1.60	1.60	11.80	- 13.92	17.8 31.1	0.70 1.35
RS10B-LM-1 RS10B-LM-2	15.875	(5/8")	10.16	9.65	5.08	9.55 17.85	11.25 19.55	20.80 39.40	1.50	1.50	14.70	- 16.59	22.2 44.5	0.95 1.85
RS12B-LM-1 RS12B-LM-2	19.05	(3/4")	12.07	11.68	5.72	11.10 20.85	13.00 22.75	24.40 45.90	1.80	1.80	16.10	19.46	28.9 57.8	1.25 2.50
RS16B-LM-1 RS16B-LM-2	25.40	(1″)	15.88	17.02	8.28	17.75 33.55	19.95 35.75	41.10 75.20	4.00	3.20	21.00	- 31.88	60.0 106.0	2.70 5.40
RS20B-LM-1 RS20B-LM-2	31.75	(1 1/4")	19.05	19.56	10.19	19.90 38.25	23.10 41.45	46.60 84.60	4.40	3.40	26.40	- 36.45	95.0 170.0	3.85 7.65
RS24B-LM-1 RS24B-LM-2	38.10	(1 1/2")	25.40	25.40	14.63	26.65 50.80	31.85 56.00	61.70 112.80	6.00	5.60	33.40	- 48.36	160.0 280.0	7.45 14.65

- 1. Connecting links are clip type for sizes up to RS16B-LM, and cotter type for sizes RS20B-LM to RS24B-LM.
- 2. RF06B-LM chain has flat shaped link plates.
- 3. Intermediate plate of RF06B-LM-2 and RS08B-LM-2 is a solid plate.
- 4. Centre sink riveting is applied for RS08B-LM-1 to RS16B-LM-1. Double stake riveting is applied to all other sizes including multi-strand chain.
- 5. Warning: previous generations of Lambda chain can not be connected with the above chains due to different dimensions.
- 6. When a single pitch offset link is used, please calculate a 40% reduction of the fatigue strength.
- 7. Also available in N.E.P. specification.
- 8. The improved bush design is applicable on RF06B until RS16B.

BS X-LAMBDA LUBE FREE ROLLER CHAIN

Technical Evolution of BS LAMBDA

BS X-LAMBDA chain is a quantum leap for power transmission technology. The basic BS LAMBDA components (a special coated pin and an oil-impregnated sintered bush) come completed with special felt seals (patent pending) between inner and outer link plate that lock in lubrication while keeping dirt and abrasives out.

Because of this evolution BS X-LAMBDA chain greatly increases the performance of the BS LAMBDA chains. When your operation needs to run clean, when machines and conveyed materials must be free from contact with oil, or when lubrication is difficult, BS X-LAMBDA chain can extend the life of your operation drastically.

Fig. 11 Basic Construction

Advantages

Additional to all BS LAMBDA advantages, TSUBAKI has enhanced the BS X-LAMBDA with the following additional advantages:

Extended Wear Life

Even longer wear life than BS LAMBDA chain (over 5 times longer).

Applicable in Dusty Environments

Extra protection of critical areas due to the specially developed felt seal.

Connecting Method

When connecting the chain, use a BS X-LAMBDA chain connecting link (with a felt seal). As shown in Fig. 12 insert felt seals between the outer plate and the connecting link plate, then attach the link.

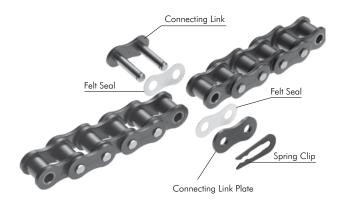
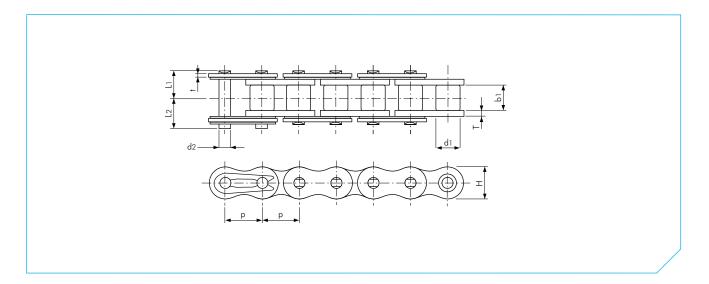


Fig. 12 Connecting Method BS X-LAMBDA

Inter-Changeability

Chains:


BS X-LAMBDA chain is interchangeable with standard BS roller chain. However, as the pins are longer than those of the standard BS roller chain, please make sure that there is no interference with the machine.

Sprockets:

Standard BS roller chain sprockets can be used. However, due to the extended lifetime of BS X-LAMBDA chain, TSUBAKI advises to install sprockets with hardened teeth in every LAMBDA application.

BS X-LAMBDA LUBE FREE ROLLER CHAIN

BS X-LAMBDA Chain

Dimensions in mm

						Pin			Link Plate			
TSUBAKI	Pitch		Roller Diameter	Inner Width	Diameter	Length	Length	Thickness	Thickness	Height	Min. Tensile Strength acc. to ISO 606	Approx. Mass
Chain No.	р		d1	b1	d2	Li	L2	Т	t	H (max)	kN	kg/m
RS08B-LMX-1		(1/2")	8.51	7.75	4.45	9.00	10.60	1.60	1.60	11.80	17.8	0.70
RS10B-LMX-1	15.875 (5/8")		10.16	9.65	5.08	10.30	12.00	1.50	1.50	14.70	22.2	0.95
RS12B-LMX-1	19.05 (3/4")		12.07	11.68	5.72	11.90	13.80	1.80	1.80	16.10	28.9	1.25
RS16B-LMX-1	25.40	(1")	15.88	17.02	8.28	18.55	21.75	4.00	3.20	21.00	60.0	2.70
		, ,										

- $1. \ \ Connecting \ links \ are \ clip \ type \ for \ sizes \ up \ to \ RS12B-LMX, \ and \ cotter \ type \ for \ size \ RS16B-LMX.$
- 2. Due to the use of the felt seal, the pins are longer. Check for machine interference.
- 3. X-LAMBDA offset links are not available.
- 4. X-LAMBDA double strand chain is not available.
- 5. Due to the oil in the felt seal, more oil adheres to the surface of X-LAMBDA chain than regular LAMBDA chain.

RS ROLLER CHAIN GT4 WINNER

Advantages

TSUBAKI RS roller chain GT4 Winner is enhanced with the following advantages:

Wear resistance

TSUBAKI's patented LG (Lube Groove) seamless bushes are precision components and perfectly cylindrical. Our special lube grooves hold oil at the point of contact, where the chain needs it most. The result is a chain that lasts longer with lower maintenance costs over the lifetime of the chain. The Lube Groove is applied to RS16B, RS20B and RS24B.

Easy disassembling with centre sink pin design

The chains can be easily and safely disassembled with a standard screw type cutter without damaging bushes. Center sink riveting is applied to RS08B up to RS16B single strand chain.

Increased kW Rating

The TSUBAKI Ring Coining process on the connecting link plate allows the chain to be specified up to its full kW rating.

Fig. 13 Ring Coined Connecting Link Plate

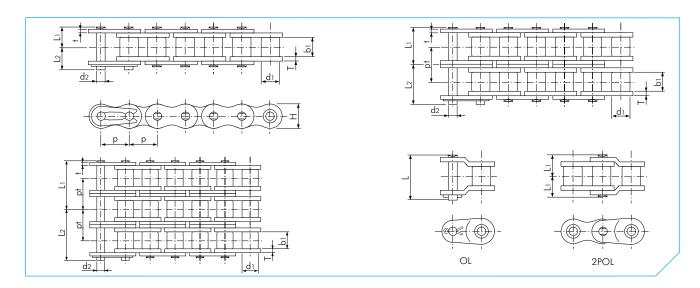
In general, connecting links have a 20% lower fatigue strength than the chain itself. However, TSUBAKI developed a special process to eliminate that loss of fatigue strength and still satisfy the customers demand for easy assembly: the Ring Coining process. Generating a cold deformation around the pin hole of the connecting link plate results in residual stress around this region, thereby adding strength. By using this process we can achieve 100% transmission capacity of the base chain.

Constant Quality Level

In pursuit of outstanding quality, every TSUBAKI chain is made of a special steel alloy, the specification of which has been developed by the TSUBAKI engineering department for selected steel mills to work with. TSUBAKI produces the GT4 Winner under highly controlled conditions in its advanced heat treatment facilities. This, in combination with TSUBAKI fatigue strength tests, ensures that our customers can always rely on a constant level of quality whenever using TSUBAKI products.

Customized Pre-Lubrication Service

Proper lubrication is the key to extending the life and improving the performance of a chain. In order to get the best performance in general applications (- 10° C to $+60^{\circ}$ C), all GT4 Winner drive chains are pre-lubricated.


For special applications, TSUBAKI can provide chains which are pre-lubricated with a special lubricant on customer demand:

- High temperature
- Low temperature
- Food safe
- Outdoor exposure
- · Dusty environment

Please consult TSUBAKI for more detailed information.

RS ROLLER CHAIN GT4 WINNER

BS GT4 WINNER

Dimensions in mm

					Pin					I :I- Plete					
						P	in			Link Plate			Min.	Min.	
													Tensile	Tensile	
													Strength	Strength	
			Roller	Inner								Transverse	acc. to	acc. to	Approx.
TSUBAKI	P	itch	Diameter	Width	Diameter	Length	Length	Length	Thickness	Thickness	Height	Pitch	ISO 606	Tsubaki	Mass
Chain No.		р	d1	b1	d2	Lı	L2	L	T	t	H (max)	pt	kN	kN	kg/m
RS05B-1						3.80	4.70	-				-	4.4	4.4	0.18
RS05B-2	8.00	(0.315")	5.00	3.00	2.30	6.65	7.55	-	0.75	0.75	7.10	5.64	7.8	7.8	0.35
RS05B-3						9.45	10.35	-	1			5.64	11.1	11.1	0.53
RF06B-1		•••••				6.10	7.70	15.10				-	8.9	9.0	0.39
RF06B-2	9.525	(3/8")	6.35	5.72	3.28	11.20	12.80	25.90	1.30	1.00	8.20	10.24	16.9	17.0	0.75
RF06B-3						16.40	17.90	-	1			10.24	24.9	24.9	1.11
RS08B-1		••••••				8.40	10.00	18.60				-	17.8	19.0	0.70
RS08B-2	12.70	(1/2")	8.51	7.75	4.45	15.30	16.90	34.50	1.60	1.60	11.80	13.92	31.1	32.0	1.35
RS08B-3						22.25	23.85	48.40	1			13.92	44.5	47.5	2.00
RS10B-1		••••••				9.55	11.25	20.80				-	22.2	23.0	0.95
RS10B-2	15.875	(5/8")	10.16	9.65	5.08	17.85	19.55	39.40	1.50	1.50	14.70	16.59	44.5	44.5	1.85
RS10B-3						26.15	27.85	56.00	1			16.59	66.7	66.8	2.80
RS12B-1		***************************************				11.10	13.00	24.40				-	28.9	31.0	1.25
RS12B-2	19.05	(3/4")	12.07	11.68	5.72	20.85	22.75	45.90	1.80	1.80	16.10	19.46	57.8	61.0	2.50
RS12B-3						30.60	32.50	65.40	1			19.46	86.7	92.0	3.80
RS16B-1		***************************************				17.75	19.95	41.10				-	60.0	70.0	2.70
RS16B-2	25.40	(1")	15.88	17.02	8.28	33.55	35.75	75.20	4.00	3.20	21.00	31.88	106.0	128.0	5.40
RS16B-3						49.50	51.70	107.10	1			31.88	160.0	192.0	8.00
RS20B-1		•••••••				19.90	23.10	46.60				-	95.0	98.1	3.85
RS20B-2	31.75	(1 1/4")	19.05	19.56	10.19	38.25	41.45	84.60	4.40	3.40	26.00	36.45	170.0	197.0	7.65
RS20B-3						56.50	59.70	121.00				36.45	250.0	295.0	11.45
RS24B-1		***************************************				26.65	31.85	61.70	6.00	5.60	33.40	-	160.0	167.0	7.45
RS24B-H-1	20.10	(1.1./0//)	05.40	05.40	14/0	29.30	34.20	-	7.50	6.00	36.20	-	-	234.0	8.20
RS24B-2	38.10	(1 1/2")	25.40	25.40	14.63	50.80	56.00	112.80	/ 00	<i>5</i> /0	22.40	48.36	280.0	335.0	14.65
RS24B-3						75.10	80.20	161.10	6.00	5.60	33.40	48.36	425.0	500.0	21.75
RS28B-1		•••••				32.45	37.45	74.40	Ī			-	200.0	200.0	9.45
RS28B-2	44.45	(1 3/4")	27.94	30.99	15.90	62.15	67.15	136.00	7.50	6.30	36.40	59.56	360.0	374.0	18.80
RS28B-3						91.95	96.95	195.90	1			59.56	530.0	560.0	28.20
RS32B-1		••••••				32.10	37.70	73.30				-	250.0	255.0	10.25
RS32B-2	50.80	(2")	29.21	30.99	17.81	61.25	66.85	134.50	7.00	6.30	42.20	58.55	450.0	485.0	20.10
RS32B-3						90.50	96.10	192.60	1			58.55	670.0	729.0	29.90
RS40B-1		••••••				39.25	45.05	88.60				-	355.0	373.0	16.35
RS40B-2	63.50	(2 1/2")	39.37	38.10	22.89	75.40	81.20	163.20	8.50	8.00	52.90	72.29	630.0	716.0	32.00
RS40B-3						111.50	117.30	235.30	1			72.29	950.0	1080.0	47.75
RS48B-1		***************************************				49.30	58.80	117.70				-	565.0	565.0	25.00
RS48B-2	76.20	(3")	48.26	45.72	29.23	95.00	104.40	209.00	12.10	10.00	63.80	91.21	1000.0	1000.0	50.00
RS48B-3						140.60	150.00	-	1			91.21	1500.0	1520.0	75.00

- 1. For sizes RS16B RS24B the Lube Groove(LG) is applied
- 2. Connecting links are clip type for sizes up to RS16B, and cotter type for sizes RS20B to RS48B.
- 3. RF06B chain has flat-shaped link plates.
- 4. Intermediate plate of multi strand RF06B-2 and RS08B-2 chain is a solid plate.
- 5. Center sink riveting is applied to RS08B-1 to RS16B-1 single strand chain.
- ${\bf 6. \ \ Double\ stake\ riveting\ is\ applied\ to\ all\ other\ sizes\ including\ multi-strand\ chain.}$
- 7. When a single pitch offset link is used, please calculate a 40% reduction of the fatigue strength.
- 8. RS24B-H-1 chain is a reinforced RS24B-1 chain.

Whether your operation requires a sanitary environment, is exposed to corrosive chemicals, is heated to extreme temperatures, runs through a freezer, is exposed to the outdoors or is affected by excessive moisture: our specially designed and tested chains will outlast your current chains and contribute to a cost effective application.

Corrosion Resistant Chain (Stainless Steel base)

BS PC Engineering Plastic Combination Chain

The pins and pin link plates of these chains are made of SUS304 equivalent (spring clips SUS301). Engineering plastic (white) is used for the inner link. This combination makes it a lube-free, low noise (5 dB lower than BS standard roller chain) and lightweight chain (50% lighter than BS standard roller chain).

Working temperature range: -20° C to $+80^{\circ}$ C. For details on corrosion resistance, please check out the table in the back of this catalogue.

BS SS Stainless Steel Chain

All basic components of this chain are made of SUS304 equivalent Stainless Steel (except the spring clips, which are made of SUS301).

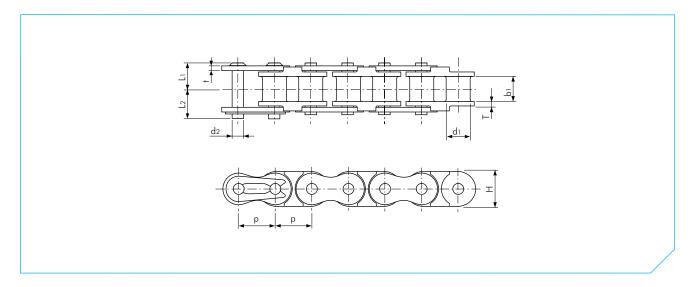
This chain can be used in special environments such as underwater, acidic and alkaline applications. It can also be used in high and low temperatures (-20°C to +400°C). SUS304 equivalent is only marginally magnetic, which is the result of the cold-forging process. For details on corrosion resistance, please check out the table in the back of this catalogue.

Corrosion Protected Chain (Carbon Steel base)

BS N.E.P. New Environmental Plating Chain

BS N.E.P. Chain is a TSUBAKI BS chain that has undergone a special surface treatment.

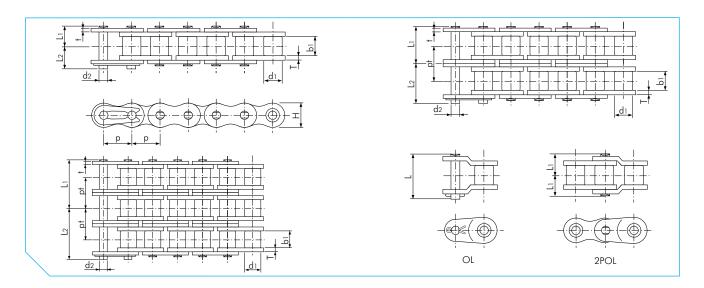
The link plates, bushes and bearing pins have a special three stage layer applied in order to provide the maximum protection from the operating or environmental conditions. (Spring clips are SUS301). N.E.P. Rollers have a special coating designed to resist the corrosive conditions as well as the severe dynamic contact between roller and sprocket.


This chain is suitable for use in environments exposed to seawater, acid-rain and other adverse weather conditions. This chain does not contain any chemically hazardous substances such as Hexavalent Chromium, Lead, Cadmium and Mercury as regulated by RoHS 1 . The kilowatt ratings are the same as those of the corresponding BS chain with a working temperature range: -10 $^{\circ}$ C to +150 $^{\circ}$ C. Above +60 $^{\circ}$ C a special high-temperature lubrication is required. Of course, BS LAMBDA N.E.P. chain is also available.

BS NP Nickel Plated Chain

BS NP Chain is a TSUBAKI BS chain that has been plated with Nickel. NP Chain has a light corrosion resistance and an attractive appearance. NP Chain is suitable for outdoor conditions exposed to water. There is a 15% reduction in Maximum Allowable Load compared to the corresponding BS chain, so please take this into account when making your chain selection. It has a working temperature range of: -10°C to +60°C. Of course, BS LAMBDA NP chain is also available.

√ RoHS = Restriction of Hazardous Substances

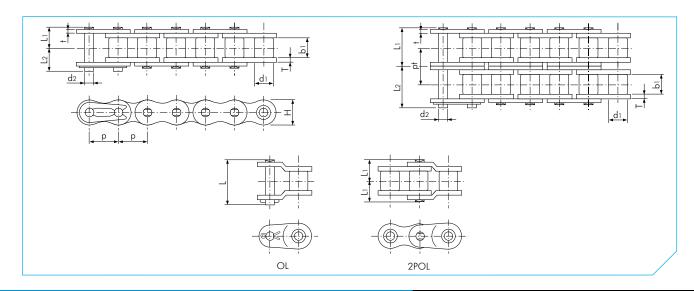


BS PC Chain

Dimensions in mm

								Pin			Link Plate			
											Max. Allowable			
											Load			
TSUBAKI	Pitch		Bush Diameter	Inner Width	Diameter	Length	Length	Thickness	Thickness	Height	acc. to Tsubaki	Approx. Mass		
Chain No.	р		d1	b1	d2	L1	Lengin L2	T	†	H (max)	kN	kg/m		
RF06B-PC-1		(3/8")	6.35	5.72	3.28	6.50	7.25	1.30	1.00	8.20	0.20	0.23		
RS08B-PC-1	12.70	(1/2")	8.51	7.75	4.45	8.35	10.05	1.60	1.50	12.00	0.46	0.40		
RS10B-PC-1	15.875	(5/8")	10.16	9.65	5.08	9.55	11.25	1.50	1.50	14.70	0.53	0.40 0.51		
RS12B-PC-1	19.05	(3/4")	12.07	11.68	5.72	11.10	13.00	1.80	1.80	16.10	0.70	0.67		

- $1. \ \, \text{Make sure to check the chain load again when replacing Stainless Steel Chain with PC Chain}.$
- 2. Offset links are not available.
- 3. Use a chain tensioner with an idler sprocket to adjust chain tension.
- 4. Guide rails should support the underside of the inner links.
- 5. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

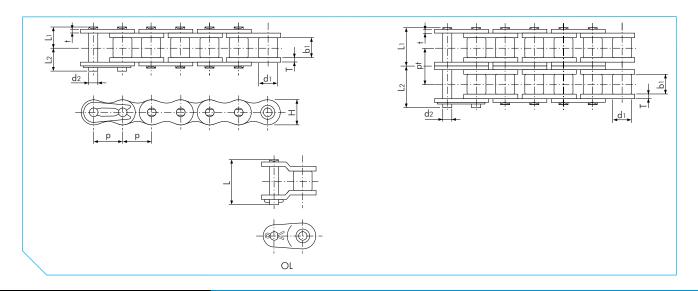


BS SS Chain

Dimensions in mm

						P	in			Link Plate				
			Roller	Inner								Transverse	Max. Allowable Load acc. to	Approx.
TSUBAKI	Pit	ch	Diameter	Width	Diameter	Length	Length	Length	Thickness	Thickness	Height	Pitch	Tsubaki	Mass
Chain No.	F)	d1	b1	d2	Li	L2	Ĺ	T	t	H (max)	pt	kN	kg/m
RF06B-SS-1	9.525	(3/8")	6.35	5.72	3.28	6.50	7.25	15.45	1.30	1.00	8.20	-	0.27	0.39
RF06B-SS-2	7.525	(5/0)	0.00	5.72	0.20	11.60	12.30	25.85	1.50	1.00	0.20	10.24	0.53	0.75
RSO8B-SS-1						8.35	10.05	20.05				-	0.48	0.70
RS08B-SS-2	12.70	(1/2")	8.51	7.75	4.45	15.30	17.00	34.60	1.50	1.50	11.80	13.92	0.96	1.35
RS08B-SS-3 RS10B-SS-1						22.25	23.95	48.60 22.90				13.92	1.44 0.66	2.00 0.95
RS10B-SS-1	15.875	(5/8")	10.16	9.65	5.08	9.55 17.85	11.25 19.55	39.40	1.50	1.50	14.70	16.59	1.32	1.85
RS10B-SS-3	13.073	(5/6)	10.10	7.03	3.00	26.20	27.80	56.00	1.50	1.50	14.70	16.59	1.97	2.80
RS12B-SS-1						11.10	13.00	26.70				-	0.87	1.25
RS12B-SS-2	19.05	(3/4")	12.07	11.68	5.72	20.90	22.70	46.10	1.80	1.80	16.10	19.46	1.74	2.50
RS12B-SS-3		(. ,				30.65	32.55	65.60	1			19.46	2.61	3.80
RS16B-SS-1	25.40	(1″)	15.88	17.02	8.28	17.75	19.95	43.70	4.00	3.20	21.00	-	2.06	2.70
RS16B-SS-2						33.55	35.75	75.50				31.88	4.12	5.40
RS20B-SS-1	31.75	(1 1/4")	19.05	19.56	10.19	20.10	23.10	48.40	4.50	3.50	26.00	-	2.90	3.85

- 1. Connecting links are clip type for sizes up to RS16B-SS, and cotter type for sizes RS12B-SS to RS20B-SS.
- 2. RF06B-SS chain has flat shaped link plates.
- 3. Center sink pins are not available. Double stake riveting is applied.
- 4. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

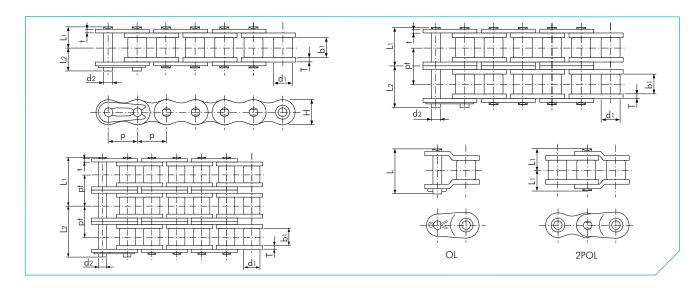


BS LAMBDA N.E.P. Chain

Dimensions in mm

													Dillicitate	
						Pi	n			Link Plate				
			Roller	Inner								Transverse	Min. Tensile Strength acc. to	Арргох.
TSUBAKI	Pitch		Diameter	Width	Diameter	Length	Length	Length	Thickness	Thickness	Height	Pitch	ISO 606	Mass
Chain No.	р		d1	bı	d2	Lı	L2	L	Т	t	H (max)	pt	kN	kg/m
RS08B-LM-NEP-1 RS08B-LM-NEP-2	12.70	(1/2")	8.51	7.75	4.45	8.40 15.30	10.00 16.90	18.60 34.50	1.60	1.60	11.80	- 13.92	17.8 31.1	0.70 1.35
RS10B-LM-NEP-1 RS10B-LM-NEP-2	15.875	(5/8")	10.16	9.65	5.08	9.55 17.85	11.25 19.55	20.80 39.40	1.50	1.50	14.70	- 16.59	22.2 44.5	0.95 1.85
RS12B-LM-NEP-1 RS12B-LM-NEP-2	19.05	(3/4")	12.07	11.68	5.72	11.10 20.85	13.00 22.75	24.40 45.90	1.80	1.80	16.10	19.46	28.9 57.8	1.25 2.50
RS16B-LM-NEP-1 RS16B-LM-NEP-2	25.40	(1″)	15.88	17.02	8.28	17.75 33.55	19.95 35.75	41.10 75.20	4.00	3.20	21.00	31.88	60.0 106.0	2.70 5.40
RS20B-LM-NEP-1		1/4")	19.05	19.56	10.19	19.90	23.10	46.60	4.40	3.40	26.40	-	95.0	3.85
RS24B-LM-NEP-1	38.10 (1	1/2")	25.40	25.40	14.63	26.65	31.85	61.70	6.00	5.60	33.40	-	160.0	7.45

- 1. Connecting links are clip type for sizes up to RS16B-LM-NEP, and cotter type for sizes RS20B-LM-NEP to RS24B-LM-NEP.
- 2. RF06B-LM-NEP chain has flat shaped link plates.
- 3. Intermediate plate of RF06B-LM-NEP-2 and RS08B-LM-NEP-2 is a solid plate.
- 4. Centre sink riveting is applied for RS08B-LM-NEP-1 to RS16B-LM-NEP-1. Double stake riveting is applied to all other sizes including multi-strand chain.
- 5. Warning: previous generations of Lambda chain can not be connected with the above chains due to different dimensions.
- 6. When a single pitch offset link is used, please calculate a 40% reduction of the fatigue strength.



BS N.E.P. Chain

Dimensions in mm

TSUBAKI Chain No. Pitch Diometer Width Diometer Length Length Tinicheess Thickness Thickness Theiliness Thickness Heigh Transverse Doc. 10 PRch PRch NEOOO PRch NEOOO PRch NEOOO PRch NEOOO PRch NEOOO PRch NEOOO PRch NEOO PRch NEO PRch NEOO PRch NEO PRch NEOO PRch NEO PRch							Pi	in			Link Plate					
TSUBAKI																
TSUBAKI Pitch Diameter Width Diameter Length Length Length Length Thickness Thickness Height Pitch ISO 606 Tsubaki Mass																
Chain No. P d1 b1 d2 L1 L2 L T t H (max) pt kN kN kg/m																
RF06B-NEP-1 P.525 RF06B-NEP-1 P.525 RF06B-NEP-1 P.525 RF06B-NEP-1 RF06B-NEP-1 RF06B-NEP-1 RF06B-NEP-1 RF16B-NEP-1 RF16B-NEP-2 RF16B-NEP-2 RF16B-NEP-2 RF16B-NEP-2 RF16B-NEP-2 RF16B-NEP-2 RF16B-NEP-1 RF16B-NEP-1 RF16B-NEP-1 RF16B-NEP-1 RF16B-NEP-2 RF16									Length							
RF06B-NEP-2 9.525 (3/8") 6.35 5.72 3.27 11.20 12.80 25.90 1.30 1.00 8.20 10.24 16.99 17.0 0.75 RS08B-NEP-1 RS08B-NEP-2 RS10B-NEP-2 RS12B-NEP-1 RS12B-NEP-1 RS12B-NEP-1 RS16B			р	dl	b1	d2			15 10		t	H (max)				
RS08B-NEP-1 12.70 (1/2") 8.51 7.75 4.45 8.40 10.00 18.60 1.60 1.60 11.80 - 17.8 19.0 0.70 13.92 31.1 32.0 1.35 15.00 15.00 15.30 16.90 34.50 1.60 1.60 1.60 11.80 - 17.8 19.0 0.70 13.92 31.1 32.0 1.35 13.90 1.35		9.525	(3/8")	6.35	5.72	3.27				1.30	1.00	8.20				
RS08B-NEP-2 12.70 (1/2) 6.51 7.73 4.45 15.30 16.90 34.50 1.80 1.80 1.80 13.92 31.1 32.0 1.35 RS10B-NEP-1																
RS10B-NEP-2 15.875 (5/8") 10.16 9.65 5.08 9.55 11.25 20.80 1.50 1.50 14.70 - 22.2 23.0 0.95 22.85 22.85 24.85				8.51	7.75	4.45	15.30	16.90	34.50	1.60	1.60	11.80	13.92		32.0	1.35
RS12B-NEP-1 19.05 (3/4") 12.07 11.68 5.72 11.10 13.00 24.40 1.80 1.80 1.80 1.80 1.80 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.80	**********************			10.16	9 65	5.08	• • • • • • • • • • • • • • • • • • • •			1.50	1.50	14 70	-			
R512B-NEP-2 P5.05 (3/4") 12.07 11.68 5.72 20.85 22.75 45.90 1.80 18.0 18.0 19.46 57.8 61.0 2.50 18.0 R516B-NEP-1 25.40 (1") 15.88 17.02 8.28 17.75 19.95 43.30 4.00 3.20 21.00 - 60.0 70.0 2.70 18.0 R520B-NEP-1 31.75 (1 1/4") 19.05 19.56 10.19 19.90 23.10 48.20 4.40 3.40 26.00 36.45 170.0 197.0 7.65		10.070	(0,0)	10.10	7.00	5.00				1.50	1.00	14.70				
RS16B-NEP-1 RS16B-NEP-1 RS16B-NEP-2 25.40 (1") 15.88 17.02 8.28 17.75 19.95 43.30 4.00 3.20 21.00 - 60.0 70.0 2.70 31.88 106.0 128.0 5.40 RS20B-NEP-1 RS20B-NEP-1 RS20B-NEP-2 31.75 (1 1/4") 19.05 19.56 10.19 19.90 23.10 48.20 4.40 3.40 26.00 - 95.0 98.1 3.85 RS20B-NEP-2 31.75 (1 1/4") 19.05 19.56 10.19 38.25 41.45 84.60 4.40 3.40 26.00 3.40 26.00 3.6.45 170.0 197.0 7.65		19.05	(3/4")	12.07	11.68	5.72				1.80	1.80	16.10				
RS16B-NEP-2 25.40 (1") 15.88 17.02 8.28 33.55 35.75 75.20 4.00 3.20 21.00 31.88 106.0 128.0 5.40 RS20B-NEP-1 RS20B-NEP-1 31.75 (1 1/4") 19.05 19.56 10.19 19.90 23.10 48.20 4.40 3.40 26.00 - 95.0 98.1 3.85 RS20B-NEP-2 31.75 (1 1/4") 19.05 19.56 10.19 38.25 41.45 84.60 4.40 3.40 26.00 36.45 170.0 197.0 7.65																
RS20B-NEP-2 31.75 (1 1/4") 19.05 19.56 10.19 38.25 41.45 84.60 4.40 3.40 26.00 36.45 170.0 197.0 7.65		25.40	(1")	15.88	17.02	8.28	• • • • • • • • • • • • • • • • • • • •			4.00	3.20	21.00				
RS20B-NEP-2 37.5 (1747) 77.55 17.56 16.17 38.25 41.45 84.60 4.45 36.45 170.0 197.0 7.65	******************************	21 75	/1 1/4"\	10.05	10.56	10 10	19.90	23.10	48.20	4.40	3 40	26.00	-	95.0	98.1	3.85
RS24B-NEP-1 38.10 (1 1/2") 25.40 25.40 14.63 26.65 31.85 64.30 6.00 5.60 33.40 - 160.0 167.0 7.45	**********************		. .							ļ			36.45			
	RS24B-NEP-1	38.10	(1 1/2")	25.40	25.40	14.63	26.65	31.85	64.30	6.00	5.60	33.40	-	160.0	167.0	7.45

- 1. Connecting links are clip type for sizes up to RS16B-NEP, and cotter type for sizes RS20B-NEP to RS24B-NEP.
- 2. RF06B-NEP chain has flat-shaped link plates.
- 3. Intermediate plate of multi strand RF06B-NEP-2 and RS08B-NEP-2 chain is a solid plate.
- 4. Center sink riveting is applied to RS08B-NEP-1 to RS16B-NEP-1 single strand chain.
- $5. \ \, \text{Double stake riveting is applied to all other sizes including multi-strand chain}.$
- 6. When a single pitch offset link is used, please calculate a 40% reduction of the fatigue strength.

BS NP Chain

Dimensions in mm

						Р	in			Link Plate					
													Min.	Min.	
													Tensile	Tensile	
			D 11									_	Strength	Strength	
TSUBAKI	D:	itch	Roller Diameter	Inner Width	Diameter.	Length	Lanath	Lanath	Thickness	Thickness	Height	Transverse Pitch	acc. to ISO 606	acc. to Tsubaki	Approx. Mas
Chain No.			d1	b1	Diameter d2	Lengin L1	Length L2	Length L	THICKNESS	THICKHESS	H (max)		kN	kN	
RF06B-NP-1		р	a I	I DI	0.2	6.10	7.70	15.10		T	n (max)	pt	8.9	9.0	kg/m 0.39
RF06B-NP-2	9.525	(2/0//\	6.35	5.72	3.27	11.20	12.80		1.30	1.00	8.20	10.24	16.9	17.0	0.39
RF06B-NP-3	9.525	(3/8")	0.33	5.72	3.27			-	1.30	1.00	6.20				
• • • • • • • • • • • • • • • • • • • •						16.40	17.90	10.70				10.24	24.9	24.9	1.11
RS08B-NP-1	10.70	(1 (0//)	0.51	7 75	4.45	8.40	10.00	18.60	1.00	1.40	11.00	- 10.00	17.8	19.0	0.70
RS08B-NP-2	12.70	(1/2")	8.51	7.75	4.45	15.30	16.90	34.50	1.60	1.60	11.80	13.92	31.1	32.0	1.35
RS08B-NP-3						22.25	23.85	48.40				13.92	44.5	47.5	2.00
RS10B-NP-1		/= /e.m				9.55	11.25	20.80				-	22.2	23.0	0.95
RS10B-NP-2	15.875	(5/8")	10.16	9.65	5.08	17.85	19.55	39.40	1.50	1.50	14.70	16.59	44.5	44.5	1.85
RS10B-NP-3						26.15	27.85	56.00				16.59	66.7	66.8	2.80
RS12B-NP-1						11.10	13.00	24.40				-	28.9	31.0	1.25
RS12B-NP-2	19.05	(3/4")	12.07	11.68	5.72	20.85	22.75	45.90	1.80	1.80	16.10	19.46	57.8	61.0	2.50
RS12B-NP-3			L			30.60	32.50	65.40				19.46	86.7	92.0	3.80
RS16B-NP-1	25.40	(1")	15.88	17.02	8.28	17.75	19.95	41.10	4.00	3.20	21.00	-	60.0	70.0	2.70
RS16B-NP-2	25.40	(1)	15.00	17.02	0.20	33.55	35.75	75.20	4.00	3.20	21.00	31.88	106.0	128.0	5.40
RS20B-NP-1	31.75	(1 1/4")	19.05	19.56	10.19	19.90	23.10	46.60	4.40	3.40	26.00	-	95.0	98.1	3.85
RS20B-NP-2	31./5	(1 1/4)	19.05	19.50	10.19	38.25	41.45	84.60	4.40	3.40	26.00	36.45	170.0	197.0	7.65
RS24B-NP-1	20.10	(1.1/0//)	05.40	05.40	14.70	26.65	31.85	61.70	/ 00	5.40	22.40	-	160.0	167.0	7.45
RS24B-NP-2	38.10	(1 1/2")	25.40	25.40	14.63	50.80	56.00	112.80	6.00	5.60	33.40	48.36	280.0	335.0	14.65
RS28B-NP-1						32.45	37.45	74.40				-	200.0	200.0	9.45
RS28B-NP-2	44.45	(1 3/4")	27.94	30.99	15.90	62.15	67.15	136.60	7.50	6.30	36.40	59.56	360.0	374.0	18.80
RS32B-NP-1						32.10	37.70	73.30				-	250.0	255.0	10.25
RS32B-NP-2	50.80	(2")	29.21	30.99	17.81	61.25	66.85	134.50	7.00	6.30	42.20	58.55	450.0	485.0	20.10

- 1. Connecting links are clip type for sizes up to RS16B-NP, and cotter type for sizes RS16B-NP to RS32B-NP.
- 2. RF06B-NP chain has flat-shaped link plates.
- 3. Intermediate plate of multi strand RF06B-NP-2 and RS08B-NP-2 chain is a solid plate.
- 4. Center sink riveting is applied to RS08B-NP-1 to RS16B-NP-1 single strand chain.
- $5. \ \, \text{Double stake riveting is applied to all other sizes including multi-strand chain}.$
- $6. \ When \ a \ single \ pitch \ of fset \ link \ is \ used, \ please \ calculate \ a \ 40\% \ reduction \ of \ the \ fatigue \ strength.$

ANSI LAMBDA LUBE FREE ROLLER CHAIN

Technical Evolution

As a pioneer in the lube-free chain market, TSUBAKI will reveal some of the key elements behind ANSI LAMBDA's outstanding performance:

Sintered Bush

A special oil impregnated sintered bush in combination with a special coated pin for long-term internal lubrication is the secret of TSUBAKI ANSI LAMBDA's long economic life and wear resistance.

Patented Ring Coining Process

Breakage of the chains connecting link is no issue at TSUBAKI thanks to this unique feature. By applying the patented Ring Coining process, TSUBAKI generates a cold deformation around the pin hole of the connecting link plate. This results in residual stress around the pin hole and thereby adds strength. By using this process transmission capacity is increased to 100% of the base chain.

Special Environments

TSUBAKI ANSI LAMBDA has outstanding performance in temperatures up to $+150^{\circ}$ C.

For temperatures above $+150^{\circ}\text{C}$: Due to the special NSF-H1 certified lubrication impregnated bushes, TSUBAKI ANSI LAMBDA KF Series is usable in a wide temperature range (from -10°C to $+230^{\circ}\text{C}$), and for food product applications while at the same time being kind to the environment.

Please consult TSUBAKI for more detailed information.

Advantages

TSUBAKI has enhanced the ANSI LAMBDA with the following advantages:

Save Maintenance Costs

No expensive labour costs as it is not required to manually lubricate this chain.

Save Purchasing Costs

Lower frequency of purchasing due to the high quality of the chain and its long economic life. No purchasing of lubricants or lubrication systems necessary.

Higher Productivity

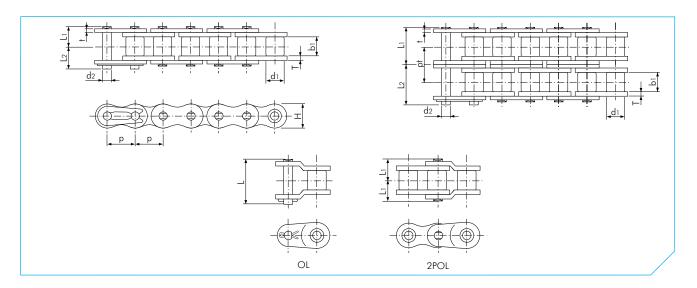
No unforeseen downtime due to chain breakdown.

Less time required for maintenance and therefore more time for production.

Environmental Friendly

Applications run clean thus reducing the risk of contaminating products, machines, floor etc.

Inter-Changeability


Sprockets:

Only simplex ANSI roller chain sprockets are interchangeable. Multi strand sprockets need to be customised due to the thickness of the roller link plates.

Due to the extended lifetime of ANSI LAMBDA chain, TSUBAKI advises to install sprockets with hardened teeth in every LAMBDA application.

ANSI LAMBDA LUBE FREE ROLLER CHAIN

ANSI LAMBDA Chain

Dimensions in mm

													Dimensio	
						P	in			Link Plate				
													Min. Tensile	
													Strength	
			Roller									Transverse	acc. to	Approx.
TSUBAKI	D:	itch		Inner Width	Diameter	Length	Length	Length	Thickness	Thickness	Height	Pitch	Tsubaki	Mass
Chain No.		р	d1	b1	d2	Lengin	Lengin L2	Lengin	T	†	H (max)	pt	kN	kg/m
RS40-LMD-1			uı	ы	uz	8.75	10.45	20.00		'	, ,		17.7	0.70
RS40-LMD-2	12.70	(1/2")	7.95	7.55	3.97	16.50	18.10	- 20.00	2.00	1.50	12.00	15.40	35.4	1.40
RS50-LMD-1		***************************************				10.75	12.45	24.00			•••••	• · · · · · · · · · · · · · · · · · · ·	28.4	1.11
RS50-LMD-2	15.875	(5/8")	10.16	9.26	5.09	20.20	22.00	-	2.40	2.00	15.00	19.00	56.8	2.20
RS60-LMD-1						13.75	15.70	32.00				- 17.00	40.2	1.72
RS60-LMD-2	19.05	(3/4")	11.91	12.28	5.96	26.05	28.05	-	3.20	2.40	18.10	24.52	80.4	3.40
RS80-LMD-1						17.15	20.25	39.90				-	71.6	2.77
RS80-LMD-2	25.40	(1")	15.88	15.48	7.94	32.70	35.90	-	4.00	3.20	24.10	31.10	143.0	5.50
RS100-LMD-1						20.65	23.85	47.50					107.0	4.30
RS100-LMD-2	31.75	(1 1/4")	19.05	18.70	9.54	39.50	42.50	-	4.80	4.00	30.10	37.60	214.0	8.60
RS120-LMD-1	38.10	(1 1/2")	22.23	24.75	11,11	25.75	29.95	59.00	5.60	4.80	36.20	•	148.0	6.40
RS140-LMD-1	44.45	(1 3/4")	25.40	24.75	12.71	27.70	32.20	63.70	6.40	5.60	42.20	-	193.0	8.10
		(/ - /							27.12				.,	

- 1. Connecting links are clip type for sizes RS40-LMD to RS60-LMD, and cotter type for sizes RS80-LMD to RS140-LMD.
- 2. Drive and Conveyor series LAMBDA chain cannot be intercoupled or interchanged.
- 3. Due to increased roller link plate thickness, Drive LAMBDA connecting links are required.
- ${\bf 4.\ Due\ to\ increased\ roller\ link\ plate\ thickness,\ LAMBDA\ double\ strand\ chains\ require\ special\ sprockets.}$
- 5. Due to increased roller link plate thickness, the pins are longer. Check for machine interference.
- 6. Offset links for LAMBDA double strand chains are not available.
- 7. When a single pitch offset link is used, please calculate a 35% reduction in fatigue strength.
- 8. Also available in N.E.P. specification.

ANSI G7 STANDARD ROLLER CHAIN

Technical Evolution

All ANSI Chains Are Not Created Equal

ANSI defines minimum threshold standards: acceptable, but they won't improve your bottom line. TSUBAKI ANSI G7 Chains set the bar higher with design innovations that deliver solid results!

Solid Lube Groove Bush - Our Latest Innovation

Unlike curled bush, TSUBAKI SOLID Lube Groove Bush does not have a split. This means that oil cannot leak from the bearing area as a result of that type of manufacturing process. Additional to that innovation TSUBAKI developed a unique process to add grooves to the inner surface of the solid bush. This lube groove process ensures longer and better lubrication which results in an extended chain life.

The Lube Groove Bush is available in ANSI sizes RS80 through RS140, perfectly sized for the most demanding applications.

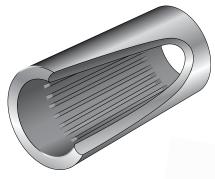


Fig. 15 Solid Lube Groove Bush

Advantages

TSUBAKI has enhanced the ANSI G7 with the following advantages:

Save Operating Costs and Reduce Downtime

Normally, ANSI chains are removed or replaced due to elongation caused by wear in the pin-bush joint. The patented Lube Groove retains lubricant right where it's needed: in the pin-bush joint. In many applications you'll notice a significant difference in maintenance, operating, and replacement costs due to the increased reliability of the ANSI G7 chains.

Increased kW Rating

Transmission capacity has been increased by applying the patented TSUBAKI Ring Coining process on the connecting link plate.

For easy assembling the pin and link plate of a connecting link are slip fit. In general, this type of connecting link has a 20% lower fatigue strength than the chain itself. However, TSUBAKI developed a special process to eliminate that loss of Fatigue Strength and still satisfy the customers demand for easy assembly: the patented Ring Coining process. By applying the patented Ring Coining process, TSUBAKI generates a cold deformation around the pin hole of the connecting link plate. This results in residual stress around the pin hole and thereby adds strength. By using this process transmission capacity is increased to 100% of that of the base chain.

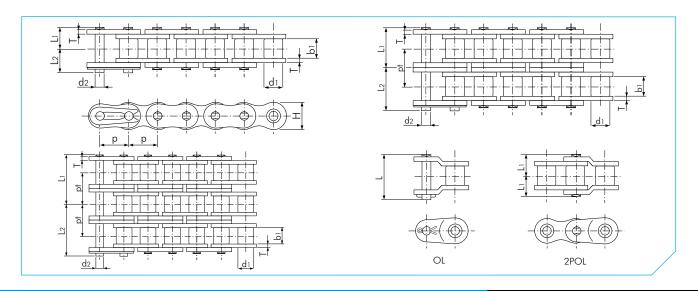
Constant Quality Level

In pursuit of outstanding quality, every TSUBAKI chain is made of a special steel alloy developed by the TSUBAKI Engineering Department.

Besides that, TSUBAKI produces the ANSI G7 under highly controlled conditions in its advanced heat treatment facilities. This, in combination with the TSUBAKI fatigue strength confirmation tests, ensures that our customers can always rely on a constant level of TSUBAKI quality.

Customised Pre-Lubrication Service

Proper lubrication is the key to extend the life and improve the performance of a chain. In order to get the best performance in general applications (-10 to $+60^{\circ}$ C), all ANSI G7 drive chains are pre-lubricated.


For special applications, TSUBAKI can provide chains which are pre-lubricated with a special lubricant on customer demand:

- High temperature
- Low temperature
- Food safe
- Outdoor exposure
- Dusty environment

Please consult TSUBAKI for more detailed information.

ANSI G7 STANDARD ROLLER CHAIN

ANSI G7

Dimensions in mm

TSUBAKI Pitch Diameter Width Diameter Length Length Length Length Length Tickness Height Pitch Roller Strength acc. to Cc.							P	in		Link	Plate				
TSUBAKI															
TSUBAKI															
TSUBAKI Pitch Diameter Width Diameter Length Length Length Tickness Height Pitch ANSI Tsubaki Mass															
Chain No. P d1 b1 d2 L1 L2 L T H (max) pt kN kN kg/m				Roller											Approx.
R\$25-1 R\$25-2 6.35 (1/4") 3.30 3.18 2.31 6.95 7.75 - 0.75 5.84 6.40 7.0 8.24 0.27 R\$25-2 6.35 (1/4") 3.30 3.18 2.31 6.95 7.75 - 0.75 5.84 6.40 7.0 8.24 0.27 R\$35-1 8.25 8.86 6.85 13.50 - - 7.9 9.81 0.33 R\$35-2 9.525 (3/8") 5.08 4.78 3.59 10.90 11.90 24.50 1.25 9.00 10.10 15.8 19.6 0.69 R\$35-4 - - 7.9 9.81 0.33 1.27 0.0 10.10 23.7 29.4 10.5 R\$35-4 - 12.70 (1/2") 7.80 3.63 5.10 5.99 12.45 1.00 9.80 - - 8.14 0.29 R\$36-1 12.70 (1/2") 7.77	TSUBAKI	P	itch		Width	Diameter	Length		Length	Tickness	Height	Pitch	ANSI		Mass
RS25-2 6.35 (1/4") 3.30 3.18 2.31 6.95 7.75 - 0.75 5.84 6.40 7.0 8.24 0.27 RS35-1 1 5.85 6.85 13.50 - 7.9 9.81 0.33 RS35-2 9.525 (3/8") 5.08 4.78 3.59 10.90 11.90 24.50 1.25 9.00 10.10 15.8 19.6 0.69 RS35-3 12.70 (1/2") 7.80 3.40 3.63 5.10 5.90 12.45 1.00 9.80 - - 8.14 0.29 RS37-1 12.70 (1/2") 7.80 4.80 3.63 6.00 7.10 14.10 1.10 9.80 - - 8.14 0.29 RS38-1 12.70 (1/2") 7.77 6.38 3.59 6.75 7.95 15.10 1.25 9.80 - - - 8.14 0.29 RS40-1 12.70	Chain No.		р	d1	b1	d2	L1	L2	L	T	H (max)	pt	kN	kN	kg/m
R525-3	RS25-1						3.80	4.50	-			-	3.5	4.12	0.14
RS35-1	RS25-2	6.35	(1/4")	3.30	3.18	2.31	6.95	7.75	-	0.75	5.84	6.40	7.0	8.24	0.27
RS35-2 RS35-3 9.525 (3/8") 5.08 4.78 3.59 16.00 10.90 16.00 11.90 16.90 24.50 34.60 1.25 10.00 9.00 10.10 15.8 23.7 19.6 29.4 0.69 10.10 RS35-3 RS35-1 12.70 12.70 (1/2") 7.80 7.80 3.40 3.63 3.63 5.10 5.90 5.90 12.45 12.70 1.00 9.80 - - 8.14 9.29 0.29 12.45 1.00 11.00 9.80 9.80 - - 8.14 9.29 0.35 14 0.35 9.80 - - 8.14 9.29 0.35 14 0.35 9.80 - - 8.14 9.29 0.35 14 0.35 14 0.35 9.80 - - 8.14 9.29 0.35 14 0.35 14 0.35 18.20 - - 8.14 9.20 0.41 12.70 0.64 12.70 0.64	RS25-3						10.15	10.95	-			6.40	10.5	12.4	0.42
RS35-3	RS35-1						5.85	6.85	13.50			-	7.9	9.81	0.33
16.90 16.90 34.60 10.10 23.7 29.4 1.05 1.0	RS35-2	0.505	(2/0")	5.00	1 70	2 50	10.90	11.90	24.50	1 25	0.00	10.10	15.8	19.6	0.69
RS37-1 12.70 (1/2") 7.80 3.40 3.63 5.10 5.90 12.45 1.00 9.80 - - 8.14 0.29	RS35-3	9.525	(3/6)	5.06	4.76	3.39	16.00	16.90	34.60	1.25	9.00	10.10	23.7	29.4	1.05
RS38-1 12.70 (1/2") 7.80 4.80 3.63 6.00 7.10 14.10 1.10 9.80 - - 8.14 0.35 RS41-1 12.70 (1/2") 7.77 6.38 3.59 6.75 7.95 15.10 1.25 9.80 - 6.7 10.3 0.41 RS40-1 RS40-2 12.70 (1/2") 7.92 7.95 3.97 15.45 17.15 33.50 15.00 12.00 14.40 27.8 35.3 12.70 RS40-3 12.70 (1/2") 7.92 7.95 3.97 15.45 17.15 33.50 15.00 12.00 14.40 27.8 35.3 1.27 RS40-4 2.70 1.50 2.265 24.15 47.90 1.50 12.00 14.40 41.7 53.0 1.90 RS50-1 1.5.87 (5/8") 10.16 9.53 5.09 2.40 30.20 5.90 2.00 15.00 18.10 43.6	RS35-4						21.05	21.95	44.70			10.10	-	39.2	1.41
RS38-1 12.70 (1/2") 7.80 4.80 3.63 6.00 7.10 14.10 1.10 9.80 - - 8.14 0.35 RS41-1 12.70 (1/2") 7.77 6.38 3.59 6.75 7.95 15.10 1.25 9.80 - 6.7 10.3 0.41 RS40-2 12.70 (1/2") 7.92 7.95 3.97 15.45 17.15 33.50 1.50 12.00 14.40 27.8 35.3 1.27 RS40-3 12.70 (1/2") 7.92 7.95 3.97 15.45 17.15 33.50 1.50 12.00 14.40 27.8 35.3 1.27 RS40-4 1.50 15.875 (5/8") 10.16 9.53 5.09 24.15 47.90 1.50 12.00 14.40 27.8 35.3 1.27 RS50-1 15.875 (5/8") 10.16 9.53 5.09 28.40 30.20 59.90 15.00 18.10	RS37-1	12.70	(1/2")	7.80	3.40	3.63	5.10	5.90	12.45	1.00	9.80	-	-	8.14	0.29
RS40-1	RS38-1	12.70	(1/2")	7.80	4.80	3.63	6.00	7.10	14.10	1.10	9.80	-		8.14	0.35
RS40-2 RS40-3 RS40-3 RS50-1 RS50-1 RS50-1 RS50-2 RS50-3 RS50-3 RS50-1 RS60-1 RS60-1 RS60-1 RS60-2 RS60-3	RS41-1	12.70	(1/2")	7.77	6.38	3.59	6.75	7.95	15.10	1.25	9.80	-	6.7	10.3	0.41
R\$40-3	RS40-1		•				8.25	9.95	18.20		[-	13.9	17.7	0.64
RS40-3 RS40-4 R	RS40-2	10.70	(1 /0//)	7.00	7.05	2.07	15.45	17.15	33.50	1.50	10.00	14.40	27.8	35.3	1.27
RS50-1 RS50-2 15.875 (5/8") 10.16 9.53 5.09 19.35 21.15 41.80 2.00 15.00 18.10 43.6 56.9 2.07 RS50-3 15.875 (5/8") 10.16 9.53 5.09 28.40 30.20 59.90 2.00 15.00 18.10 43.6 56.9 2.07 RS50-4 1.04 <td< td=""><td>RS40-3</td><td>12.70</td><td>(1/2)</td><td>7.92</td><td>7.95</td><td>3.97</td><td>22.65</td><td>24.15</td><td>47.90</td><td>1.50</td><td>12.00</td><td>14.40</td><td>41.7</td><td>53.0</td><td>1.90</td></td<>	RS40-3	12.70	(1/2)	7.92	7.95	3.97	22.65	24.15	47.90	1.50	12.00	14.40	41.7	53.0	1.90
RS50-2 RS50-3 15.875 (5/8") 10.16 9.53 5.09 19.35 21.15 41.80 59.90 2.00 15.00 18.10 43.6 56.9 2.07 RS50-3 RS60-1 RS60-2 19.05 (3/4") 11.91 12.70 5.96 24.25 24.25 26.25 26.25 52.60 24.25 2.40 18.10 43.6 18.10 43.6 65.4 85.3 40.2 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53	RS40-4						29.90	31.30	62.30			14.40	-	70.6	2.53
RS50-3 15.875 (5/8") 10.16 9.53 5.09 28.40 30.20 59.90 2.00 15.00 18.10 65.4 85.3 3.09 RS50-4 RS60-1 19.05 (3/4") 11.91 12.70 5.96 28.20 24.25 26.25 52.60 2.40 18.10 22.80 62.6 80.4 3.04 RS60-3 19.05 (3/4") 11.91 12.70 5.96 24.25 26.25 52.60 2.40 18.10 22.80 62.6 80.4 3.04 RS60-4 47.05 49.55 98.30 24.00 22.80 - 161.0 6.04 RS80-1 16.25 19.25 36.60 - 55.6 71.6 2.66 RS80-2 25.40 (1") 15.88 15.88 7.04 30.90 33.90 67.50 3.20 24.10 29.30 111.2 143.0 5.27	RS50-1		•••••••				10.30	11.90	22.60			-	21.8	28.4	1.04
RS50-3 7 28.40 30.20 59.90 18.10 65.4 85.3 3.09 RS50-4 37.45 39.25 78.10 18.10 65.4 85.3 3.09 RS60-1 12.85 14.75 28.20 - 31.3 40.2 1.53 RS60-2 19.05 (3/4") 11.91 12.70 5.96 24.25 26.25 52.60 2.40 18.10 22.80 62.6 80.4 3.04 RS60-3 19.05 (3/4") 11.91 12.70 5.96 38.15 75.50 2.40 18.10 22.80 62.6 80.4 3.04 RS60-3 47.05 98.30 2.40 18.10 22.80 93.9 121.0 4.54 RS80-1 16.25 19.25 36.60 2.5 5.56 71.6 2.66 RS80-2 25.40 (1") 15.88 7.64 30.90 33.90 67.50 3.20 24.10 29.30 111.2 143.0 <td>RS50-2</td> <td>15.075</td> <td>/F /O//)</td> <td>10.17</td> <td>0.50</td> <td>5.00</td> <td>19.35</td> <td>21.15</td> <td>41.80</td> <td>0.00</td> <td>15.00</td> <td>18.10</td> <td>43.6</td> <td>56.9</td> <td>2.07</td>	RS50-2	15.075	/F /O//)	10.17	0.50	5.00	19.35	21.15	41.80	0.00	15.00	18.10	43.6	56.9	2.07
R560-1 19.05 (3/4") 11.91 12.70 5.96 24.25 26.25 52.60 2.40 18.10 22.80 62.6 80.4 3.04 R560-3 19.05 (3/4") 11.91 12.70 5.96 24.25 26.25 52.60 2.40 18.10 22.80 62.6 80.4 3.04 R560-3 47.05 49.55 98.30 22.80 93.9 121.0 4.54 R580-1 16.25 19.25 36.60 2.66 55.6 71.6 2.66 R580-2 25.40 (1") 15.88 7.64 30.90 33.90 67.50 3.20 24.10 29.30 111.2 143.0 5.27	RS50-3	15.8/5	(5/8")	10.16	9.53	5.09	28.40	30.20	59.90	2.00	15.00	18.10	65.4	85.3	3.09
RS60-2 RS60-3 19.05 (3/4") 11.91 12.70 5.96 24.25 35.65 26.25 38.15 38.15 52.60 75.50 2.40 18.10 22.80 22.80 62.6 93.9 80.4 121.0 3.04 4.54 4.70 RS80-1 RS80-2 16.25 25.40 19.25 4.70 30.90 33.90 33.90 33.90 33.90 33.90 33.90 33.90 24.10 30.90 29.30 30.90 111.2 30.90 143.0 30.90 5.27	RS50-4						37.45	39.25	78.10			18.10	-	114.0	4.11
RS60-3 19.05 (3/4") 11.91 12.70 5.96 35.65 38.15 75.50 2.40 18.10 22.80 93.9 121.0 4.54 RS60-4 47.05 49.55 98.30 22.80 - 161.0 6.04 RS80-1 16.25 19.25 36.60 - 55.6 71.6 2.66 RS80-2 25.40 (1") 15.88 15.88 7.04 30.90 33.90 67.50 3.20 24.10 29.30 111.2 143.0 5.27	RS60-1		•••••				12.85	14.75	28.20			-	31.3	40.2	1.53
KS60-3 35.65 38.15 75.50 22.80 93.9 121.0 4.54 RS60-4 47.05 49.55 98.30 22.80 - 161.0 6.04 RS80-1 16.25 19.25 36.60 - 55.6 71.6 2.66 RS80-2 25.40 (1") 15.88 15.88 7.04 30.90 33.90 67.50 3.20 24.10 29.30 111.2 143.0 5.27	RS60-2	10.05	(0 (4//)	11.01	10.70	5.07	24.25	26.25	52.60	0.40	10.10	22.80	62.6	80.4	3.04
R\$80-1	RS60-3	19.05	(3/4")	11.91	12.70	5.96	35.65	38.15	75.50	2.40	18.10	22.80	93.9	121.0	4.54
R\$80-1	RS60-4						47.05	49.55	98.30			22.80	-	161.0	6.04
KS80-2 25.40 (1") 15.88 15.88 7.64 30.90 33.90 67.50 3.20 24.10 29.30 111.2 143.0 5.27	RS80-1						16.25	19.25	36.60			-	55.6	71.6	2.66
25.40 (1") 15.88 15.88 7.94 45.60 40.50 3.20 24.10 60.00 17.60 7.00	RS80-2	05.40	(1//)	15.00	15.00	7.04	30.90	33.90	67.50	2.00	04.10	29.30	111.2		5.27
K58U-3 45.60 48.50 96.90 29.30 166.8 215.0 7.89	RS80-3	25.40	(1")	15.88	15.88	7.94	45.60	48.50	96.90	3.20	24.10	29.30	166.8	215.0	7.89
RS80-4 60.25 63.25 126.30 29.30 - 286.0 10.50	RS80-4						60.25	63.25	126.30			29.30	-	286.0	10.50
R\$100-1	RS100-1		••••••				19.75	22.85	43.70		ľ	-	87.0	107.0	3.99
R\$100-2 31.75 (1.1/4") 19.05 19.05 9.54 37.70 40.80 81.50 4.00 30.10 35.80 174.0 214.0 7.85	RS100-2	01.75	(1 1 (4//)	10.05	10.05	0.54	37.70	40.80	81.50	4.00	20.10	35.80	174.0	214.0	7.85
85100-3 31.75 (11/4") 19.05 19.05 9.54 55.65 58.75 117.30 4.00 30.10 35.80 261.0 321.0 11.77	RS100-3	31./5	(1 1/4")	19.05	19.05	9.54	55.65	58.75	117.30	4.00	30.10	35.80	261.0	321.0	11.77
R\$100-4 73.55 76.65 153.10 35.80 - 428.0 15.70	RS100-4						73.55	76.65	153.10			35.80	-	428.0	15.70
R\$120-1 24.90 28.90 55.00 - 125.0 148.0 5.93	RS120-1		•••••				24.90	28.90	55.00			-	125.0	148.0	5.93
R\$120-2 20.00 (1.10%) 20.00 27.00 11.70 47.60 51.60 103.20 40.00 45.40 250.0 296.0 11.70	RS120-2	20.10	(1.1/0//)	00.00	05.40	1111	47.60	51.60	103.20	4.00	24.00	45.40	250.0	296.0	11.70
8120-3 38.10 (11/2") 22.23 25.40 11.11 70.40 74.40 148.60 4.80 36.20 45.40 375.0 444.0 17.53	RS120-3	38.10	(1 1/2")	22.23	25.40	11.11	70.40	74.40	148.60	4.80	36.20	45.40	375.0	444.0	17.53
RS120-4 93.10 97.10 194.00 45.40 - 592.0 23.36	RS120-4						93.10	97.10	194.00		L	45.40	-	592.0	23.36
RS140-1 26.90 31.70 59.50 - 170.0 193.0 7.49	RS140-1						26.90	31.70	59.50			-		193.0	7.49
RS140-2 44.45 (1 3/4") 25.40 25.40 12.71 51.35 56.15 112.30 5.60 42.20 48.90 340.0 386.0 14.83	RS140-2	44.45	(1 3/4")	25.40	25.40	12.71	51.35	56.15	112.30	5.60	42.20	48.90	340.0	386.0	14.83
RS140-3 75.85 80.75 161.30 48.90 510.0 580.0 22.20	RS140-3						75.85	80.75	161.30		L	48.90	510.0	580.0	22.20
R\$160-1 31.85 36.85 70.20 - 223.0 255.0 10.10	RS160-1						31.85	36.85	70.20			-	223.0	255.0	10.10
R\$160-2 50.80 (2") 28.58 31.75 14.29 61.15 66.15 132.20 6.40 48.20 58.50 446.0 510.0 20.04	RS160-2	50.80	(2")	28.58	31.75	14.29	61.15	66.15	132.20	6.40	48.20	58.50	446.0	510.0	20.04
R\$160-3 90.45 95.45 190.70 58.50 669.0 765.0 30.02	RS160-3						90.45	95.45	190.70			58.50	669.0	765.0	30.02
RS180-1 35.65 42.45 80.60 - 281.0 336.0 13.45	RS180-1						35.65	42.45	80.60			-		336.0	13.45
<u>K\$180-2</u> 57.15 (2 1/4") 35.71 35.72 17.46 68.75 75.35 151.10 7.15 54.20 65.80 562.0 673.0 26.52	RS180-2	57.15	(2 1/4")	35.71	35.72	17.46	68.75	75.35	151.10	7.15	54.20	65.80	562.0	673.0	26.52
RS180-3 101.70 108.50 216.90 65.80 843.0 1010.0 38.22	RS180-3						101.70	108.50	216.90		L	65.80	843.0	1010.0	38.22
RS200-1 39.00 44.80 87.30 - 347.0 427.0 16.49	RS200-1						39.00	44.80	87.30			-	347.0	427.0	16.49
RS200-2 63.50 (2 1/2") 39.68 38.10 19.85 74.85 80.65 161.20 8.00 60.30 71.60 694.0 853.0 32.63	RS200-2	63.50	(2 1/2")	39.68	38.10	19.85	74.85	80.65	161.20	8.00	60.30	71.60	694.0	853.0	32.63
RS200-3 110.75 116.45 233.00 71.60 1041.0 1280.0 49.02	RS200-3						110.75	116.45	233.00			71.60	1041.0	1280.0	49.02
PS240.1	RS240-1	74.00	(2")	47.42	47.42	02.01		55.50	106.70	0.50	70.40	-	500.0		
RS240-2 76.20 (3") 47.63 47.63 23.81 91.90 99.40 198.40 9.50 72.40 87.80 1000.0 1250.0 48.10	RS240-2	70.20	(3)	47.03	47.03	23.01	91.90	99.40	198.40	9.50	/2.40	87.80	1000.0	1250.0	48.10

- 1. RS25 RS35 are rollerless chain (only bush). The figure shown is the bush diameter.
- 2. Connecting links are clip type for sizes up to RS60, and cotter type for sizes RS80 to RS200. RS240 connecting links are spring pin type.
- 3. When a single pitch offset link is used, please calculate a 35% reduction of the fatigue strength.

Whether your operation requires a sanitary environment, is exposed to corrosive chemicals, is heated to extreme temperatures, runs through a freezer, is exposed to the outdoors or is affected by excessive moisture: our specially designed and tested chains will outlast your current chains and contribute to a cost effective application.

Corrosion Resistant Chain (Stainless Steel base)

ANSI PC Engineering Plastic Combination Chain

The pins and pin link plates of these chains are made of SUS304 equivalent (spring clips SUS301). Engineering Plastic (white) is used for the inner link. This combination makes it a lube-free, low noise (5 dB lower than ANSI standard roller chain) and lightweight chain (50% lighter than ANSI standard roller chain). Working temperature range: -20°C to +80°C. For details on corrosion resistance, please check out the table in the back of this catalogue as a basic guide.

ANSI SS Stainless Steel Chain

All basic components of this chain are made of SUS304 equivalent Stainless Steel (except the spring clips, which are made of SUS301). This chain can be used in special environments such as underwater, acidic and alkaline applications. It can also be used in high and low temperatures (-20°C to +400°C). SUS304 equivalent is only marginally magnetic, due to the cold-forging process. For details on corrosion resistance, please check out the table in the back of this catalogue as a basic guide.

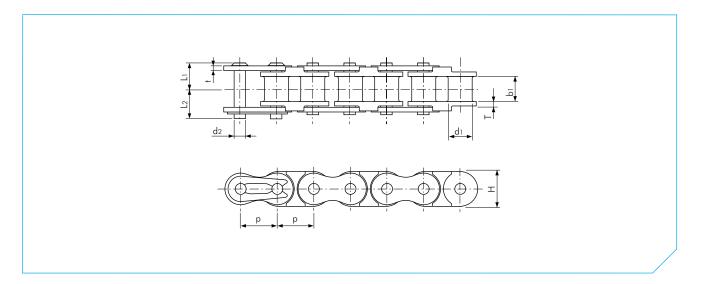
ANSI AS Stainless Steel Chain

The pins and rollers of this roller chain are made of precipitation-hardened, tempered stainless steel. The link plates and the bushes are made of SUS304 equivalent stainless steel (spring clips are SUS301). The Maximum Allowable Load is 1.5 times that of ANSI SS chain. Corrosion resistance is slightly lower than standard SS chain. This chain is suitable where corrosion and heat resistance is required in a heavy duty drive application and where a smaller ANSI SS chain is preferred. Magnetism exists due to the use of precipitation-hardened stainless steel. The working temperature range: -20°C to +400°C.

Corrosion Protected Chain (Carbon Steel base)

ANSI N.E.P. New Environmental Plating Chain

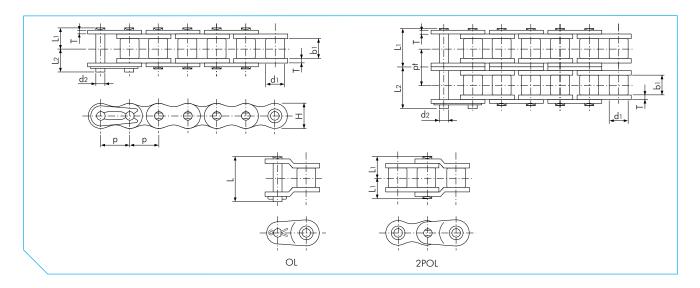
ANSI N.E.P. Chain is a TSUBAKI ANSI G7 chain that has undergone a special surface treatment. The link plates, bushes and pins have a special three stage layer applied in order to provide the maximum protection from the operating or environmental conditions. (Spring clips are SUS301). N.E.P. Rollers have a special coating designed to resist the corrosive conditions as well as the severe dynamic contact between roller and sprocket.


This chain is suitable for use in environments exposed to seawater, acid-rain and other adverse weather conditions. This chain does not contain any chemically hazardous substances such as Hexavalent Chromium, Lead, Cadmium and Mercury as regulated by RoHS $^{\lor}$. The kilowatt ratings are the same as those of the corresponding ANSI G7 chain. Working temperature range is: -10 $^{\circ}$ C to +150 $^{\circ}$ C. Above +60 $^{\circ}$ C a special high-temperature lubrication is required. Of course, ANSI LAMBDA N.E.P. chain is also available.

ANSI NP Nickel Plated Chain

ANSI NP Chain is a TSUBAKI ANSI G7 chain that has been plated with Nickel. NP chain has a light corrosion resistance and an attractive appearance. NP chain is suitable for outdoor conditions exposed to water. There is a 15% reduction in Maximum Allowable Load compared to the corresponding ANSI G7 chain, so please take this into account when making your chain selection. The working temperature range is: -10°C to +60°C. Of course, ANSI LAMBDA NP chain is also available.

√RoHS = Restriction of Hazardous Substances

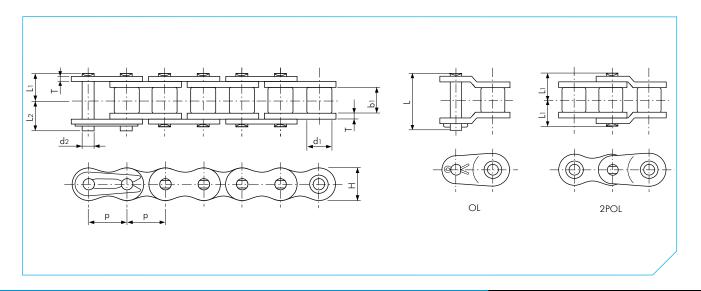


ANSI PC Chain

Dimensions in mm

					Pin			Link Plate		.,	
										Max. Allowable	
										Load	
TSUBAKI	Pitch	Bush Diameter	Inner Width	Diameter	Length	Length	Thickness	Thickness	Height	acc. to Tsubaki	Approx. Mass
Chain No.	р	d1	b1	d2	L1	L2	T	t	H (max)	kN	kg/m
RS25-PC-1	6.35 (1/4")	3.30	3.18	2.31	4.50	5.50	1.30	0.75	6.00	0.08	0.10
RS35-PC-1 RS40-PC-1	9.525 (3/8") 12.70 (1/2")	5.08 7.92	4.78 7.95	3.59 3.97	6.85 8.25	7.85 9.95	2.20 1.50	1.25 1.50	9.00 12.00	0.18 0.44	0.22 0.39
RS50-PC-1	15.875 (5/8")	10.16	9.53	5.09	10.30	12.00	2.00	2.00	15.00	0.44	0.58
RS60-PC-1	19.05 (3/4")	11.91	12.70	5.96	12.85	14.75	2.40	2.40	18.10	0.88	0.82

- 1. Make sure to check the chain load again when replacing Stainless Steel Chain with PC Chain.
- 2. Offset links are not available.
- 3. Use a chain tensioner with an idler sprocket to adjust chain tension.
- 4. Guide rails should support the underside of the inner links.
- 5. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

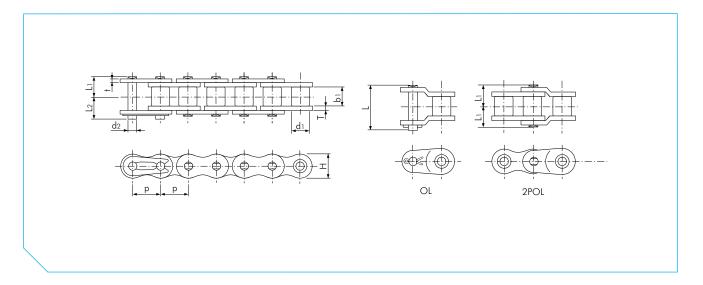

ANSI SS Chain

Dimensions in mm

						P	in		Link	Plate			
TSUBAKI	Pito	:h	Roller Diameter	Inner Width	Diameter	Length	Length	Length	Thickness	Height	Transverse Pitch	Max. Allowable Load acc. to Tsubaki	Approx. Mass
Chain No.	р		d1	Ы	d2	Lı	L2	L	T	H (max)	pt	kN	kg/m
RS11-SS-1	3.7465	(-)	2.285	1.83	1.57	2.275	3.165	-	0.38	3.50	-	0.05	0.052
RS25-SS-1	6.35	(1/4")	3.30	3.18	2.31	3.80	4.80	-	0.75	5.84	-	0.12	0.14
RS35-SS-1 RS35-SS-2	9.525	(3/8")	5.08	4.78	3.59	6.05 11.15	6.85 11.85	14.70 24.60	1.25	9.00	- 10.10	0.26 0.53	0.33 0.69
RS40-SS-1 RS40-SS-2	12.70	(1/2")	7.92	7.95	3.97	8.25 15.25	9.65 17.35	18.60 33.50	1.50	12.00	- 14.40	0.44 0.88	0.64 1.27
RS50-SS-1 RS50-SS-2	15.875	(5/8")	10.16	9.53	5.09	10.30 19.15	12.00 21.15	23.90 41.80	2.00	15.00	- 18.10	0.69 1.37	1.04 2.07
RS60-SS-1 RS60-SS-2	19.05	(3/4")	11.91	12.70	5.96	12.85 24.25	14.75 26.15	29.40 52.60	2.40	18.10	22.80	1.03 2.06	1.53 3.04
RS80-SS-1 RS80-SS-2	25.40	(1″)	15.88	15.88	7.94	16.25 30.90	19.25 33.90	39.00 68.05	3.20	24.10	- 29.30	1.77 3.53	2.66 5.30
RS100-SS-1 RS100-SS-2	31.75	(1 1/4")	19.05	19.05	9.54	19.75 37.70	22.85 40.80	45.70 81.60	4.00	30.10	- 35.80	2.55 5.10	4.01 7.99

Note

- 1. RS11-SS to RS35-SS are rollerless chain (only bush). The figure shown is the bush diameter.
- 2. Connecting links are clip type for sizes RS11-SS to RS60-SS, and cotter type for sizes RS80-SS to RS100-SS.
- 3. The rivet-type for single-strand and multi-strand chain above RS80-SS is quad-rivet.
- 4. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

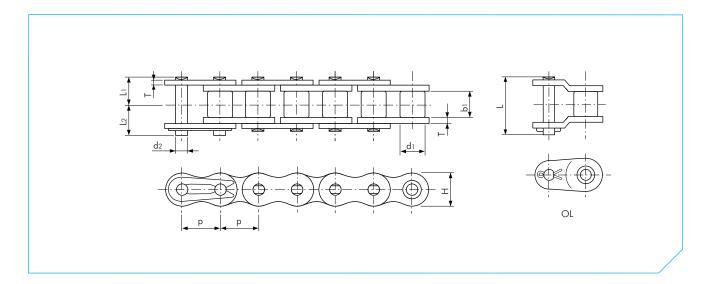

ANSI AS Chain

Dimensions in mm

					Pi	in		Link	Plate		
	201	Roller	Inner					Ŧ1		Max. Allowable Load acc. to	Approx.
TSUBAKI	Pitch	Diameter	Width b1	Diameter	Length	Length	Length	Thickness T	Height	Tsubaki	Mass
Chain No. RS35-AS-1	9.525 p	d1 (8") 5.08	4.78	d2 3.59	L1 5.85	L2 6.85	14.70	1.25	H (max) 9.00	kN 0.39	kg/m 0.33
RS40-AS-1	12.70 (1/	(2") 7.92	7.95	3.97	8.25	9.95	18.60	1.50	12.00	0.69	0.64
RS50-AS-1		/8") 10.16	9.53	5.09	10.30	12.00	23.90	2.00	15.00	1.03	1.04
RS60-AS-1		/4") 11.91	12.70	5.96	12.85	14.75	29.40	2.40	18.10	1.57	1.53
RS80-AS-1		(1") 15.88	15.88	7.94	16.25	19.25	39.00	3.20	24.10	2.65	2.66
10007101	20.10	(1)	10.00	7.7.	10.20	17.20	37.55	0.20	21.10	2.00	2.00

Note

- 1. Connecting links are clip type for sizes RS35-AS to RS60-AS, and cotter type for size RS80-AS.
- $2.\ \mbox{RS35-AS}$ is rollerless chain (only bush). The figure shown is the bush diameter.
- 3. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

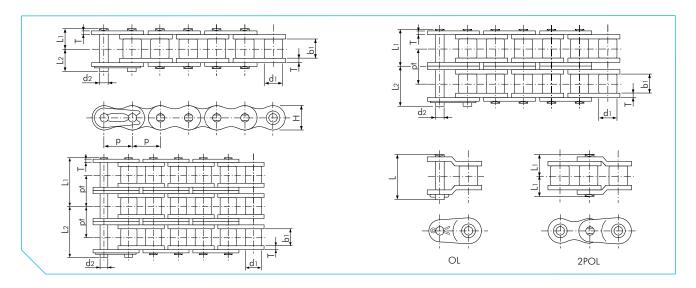


ANSI LAMBDA N.E.P. Chain

Dimensions in mm

					P	in			Link Plate			
TSUBAKI Chain No.	Pitch p	Roller Diameter d1	Inner Width b1	Diameter d2	Length L1	Length L2	Length L	Thickness T	Thickness †	Height H (max)	Min. Tensile Strength acc. to Tsubaki kN	Approx. Mass kg/m
RS40-LMD-NEP-1	12.70 (1/2")	7.95	7.55	3.97	8.75	10.45	20.00	2.00	1.50	12.00	17.7	0.70
RS50-LMD-NEP-1	15.875 (5/8")	10.16	9.26	5.09	10.75	12.45	24.00	2.40	2.00	15.00	28.4	1.11
RS60-LMD-NEP-1	19.05 (3/4")	11.91	12.28	5.96	13.70	15.70	32.00	3.20	2.40	18.10	40.2	1.72
RS80-LMD-NEP-1	25.40 (1")	15.88	15.48	7.94	17.15	20.25	39.90	4.00	3.20	24.10	71.6	2.77
RS100-LMD-NEP-1	31.75 (1 1/4")	19.05	18.70	9.54	20.65	23.85	47.50	4.80	4.00	30.10	107.0	4.30
RS120-LMD-NEP-1	38.10 (1 1/2")	22.23	24.75	11.11	25.75	29.95	59.00	5.60	4.80	36.20	148.0	6.40
RS140-LMD-NEP-1	44.45 (1 3/4")	25.40	24.75	12.71	27.70	32.20	63.70	6.40	5.60	42.20	193.0	8.10

- 1. Connecting links are clip type for sizes RS40-LMD-NEP to RS60-LMD-NEP, and cotter type for sizes RS80-LMD-NEP to RS140-LMD-NEP.
- 2. Drive and Conveyor series LAMBDA chain cannot be intercoupled or interchanged.
- 3. Due to increased roller link plate thickness, Drive LAMBDA connecting links are required.
- 4. Due to increased roller link plate thickness, the pins are longer. Check for machine interference.
- 5. When a single pitch offset link is used, please calculate a 35% reduction in fatigue strength.


ANSI N.E.P. Chain

Dimensions in mm

					Р	in		Link	Plate			
TSUBAKI Chain No.	Pitch p	Roller Diameter d1	Inner Width b1	Diameter d2	Length L1	Length L2	Length L	Thickness T	Height H (max)	Min. Tensile Strength acc. to ANSI kN	Min. Tensile Strength acc. to Tsubaki kN	Approx. Mass kg/m
RS35-NEP-1	9.525 (3/8")	5.08	4.78	3.59	5.85	6.85	13.50	1.25	9.00	7.9	9.81	0.33
RS40-NEP-1	12.70 (1/2")	7.92	7.95	3.97	8.25	9.95	18.20	1.50	12.00	13.9	17.7	0.64
RS50-NEP-1	15.875 (5/8")	10.16	9.53	5.09	10.30	11.90	22.60	2.00	15.00	21.8	28.4	1.04
RS60-NEP-1	19.05 (3/4")	11.91	12.70	5.96	12.85	14.75	28.20	2.40	18.10	31.3	40.2	1.53
RS80-NEP-1	19.05 (3/4") 25.40 (1")	15.88	15.88	7.94	16.25	19.25	38.20	3.20	24.10	55.6	71.6	2.66
	(.)			, .	, , , , , ,	.,,==		-1				

Note

- 1. Connecting links are clip type for sizes RS35-NEP to RS60-NEP, and cotter type for size RS80-NEP.
- $2. \ When \ a \ single \ pitch \ offset \ link \ is \ used, \ please \ calculate \ a \ 35\% \ reduction \ of \ the \ fatigue \ strength.$

ANSI NP Chain

Dimensions in mm

						Р	in		Link	Plate			
												Min. Tensile	
												Strength	
			Roller	Inner							Transverse	acc. to	Approx.
TSUBAKI	Pit	ch	Diameter	Width	Diameter	Length	Length	Length	Thickness	Height	Pitch	Tsubaki	Mass
Chain No.	F		d1	b1	d2	Li	L2	L	T	H (max)	pt	kN	kg/m
RS25-NP-1	6.35	(1/4")	3.30	3.18	2.31	3.80	4.50	7.60	0.75	5.84	-	4.12	0.14
RS35-NP-1						5.85	6.85	13.50			-	9.81	0.33
RS35-NP-2	9.525	(3/8")	5.08	4.78	3.59	10.90	11.90	24.50	1.25	9.00	10.10	19.6	0.69
RS35-NP-3						16.00	16.90	34.60			10.10	29.4	1.05
RS40-NP-1	10.70	(2. (0.11)	7.00	7.05	0.07	8.25	9.95	18.20	,	10.00	-	17.7	0.64
RS40-NP-2	12.70	(1/2")	7.92	7.95	3.97	15.45	17.15	33.50	1.50	12.00	14.40	35.3	1.27
RS40-NP-3 RS50-NP-1						22.65 10.30	24.15 11.90	47.90 22.60			14.40	53.0 28.4	1.90 1.04
RS50-NP-2	15.875	(5/8")	10.16	9.53	5.09	19.35	21.15	41.80	2.00	15.00	18.10	26.4 56.9	2.07
RS50-NP-3	13.673	(3/6)	10.10	9.55	3.09	28.40	30.20	59.90	2.00	13.00	18.10	85.3	3.09
RS60-NP-1						12.85	14.75	28.20			10.10	40.2	1.53
RS60-NP-2	19.05	(3/4")	11.91	12.70	5.96	24.25	26.25	52.60	2.40	18.10	22.80	80.4	3.04
RS60-NP-3	17.00	(0, .)		12.70	0.70	35.65	38.15	75.50	2.10	10.10	22.80	121.0	4.54
RS80-NP-1	············					16.25	19.25	36.60			_	71.6	2.66
RS80-NP-2	25.40	(1")	15.88	15.88	7.94	30.90	33.90	67.50	3.20	24.10	29.30	143.0	5.27
RS80-NP-3		, ,				45.60	48.50	96.90			29.30	215.0	7.89
RS100-NP-1	31.75	(1 1/4")	19.05	19.05	9.54	19.75	22.85	43.70	4.00	30.10	-	107.0	3.99

- 1. RS25-NP to RS35-NP are rollerless chains (only bush). The figure shown is the bush diameter.
- 2. Connecting links are clip type for sizes RS25-NP to RS60-NP, and cotter type for size RS80-NP to RS100-NP.
- 3. When a single pitch offset link is used, please calculate a 35% reduction of the fatigue strength.

ANSI HEAVY DUTY ROLLER CHAIN

The superior performance of TSUBAKI Heavy Duty chains is the result of a comprehensive quality control network that begins with selection of the world's finest steel materials. It continues with inspection and analysis of quality and performance in 20 different work areas. At TSUBAKI quality control is not just a one time check; it is a total dedication. It is your assurance of long lasting and dependable performance.

TSUBAKI offers Heavy Duty chains for applications that exceed the capabilities of TSUBAKI ANSI G7 standard roller chain. Heavy Duty chain should be considered in the following situations:

- Harsh environments where the chain will be subjected to heavy impact.
- 2. Compact drives for equipment or machines that must work in tight spaces.
- 3. When higher transmission power, allowable load or tensile strength is required.
- 4. When a lower rate of elastic elongation is required.

H Series

H Series chain differs only from the ANSI G7 Series chain in the thickness of the link plates. The link plates have the same thickness as the link plates of the next larger pitch size in ANSI G7 Series. The increased thickness of the link plates provides a 10% greater capacity for fatigue strength. In short, H Series chains are especially suitable for situations where the load is heavy and operating speed is low (up to 50 m/min) or where operating conditions are severe.

HT Series

HT Series chain provides a (10% to 20%) higher Tensile Strength than ANSI G7 Series chain by using through-hardened pins and link plates of the next larger pitch size in ANSI G7 series. HT Series chain also provides a higher fatigue strength and is best suited for low operating speeds - up to 50 m/min Dimensions of the chain are identical to the H Series chain.

SUPER Series

The dimensions of these series are identical to those of ANSI G7 Series chain. The special design of the SUPER Series link plate delivers exceptional performance. The pin holes are critically formed and ball drifted and the pins are through-hardened for greater fatigue strength (25% to 30%). SUPER Series chains offer 10% higher tensile strength than the equivalent size ANSI G7 Series chain. SUPER Series chains can be used to replace the next larger pitch size of ANSI G7 Series, making them ideal for applications where chain space is limited. Best suited for low speed operating conditions - up to 50 m/min.

SUPER-H Series

The thickness of the SUPER-H Series link plates is the same as the next larger pitch size of SUPER Series chain. The pins are also through-hardened which provides a higher tensile strength and a higher fatigue strength than SUPER Series chain. The pin holes are critically formed and ball drifted. SUPER-H Series chains can be used to replace the next larger size of ANSI standard chain, making them ideal for applications where space is limited. Best suited for low speed operating conditions - up to 50 m/min.

ULTRA SUPER Series

ULTRA SUPER Series offer longer wear life, greater fatigue strength (170%) and higher tensile strength (150%) than any other TSUBAKI roller chain. The pins are through-hardened and the pin holes are critically formed and ball drifted. The diameter of the pins has been increased. This chain is well suited for applications where there are space limitations. The heavy duty construction of the ULTRA SUPER Series chain allows it to replace chains up to two pitch sizes larger ANSI G7 Series chain. It is best suited for low speed operating conditions up to 50 m/min.

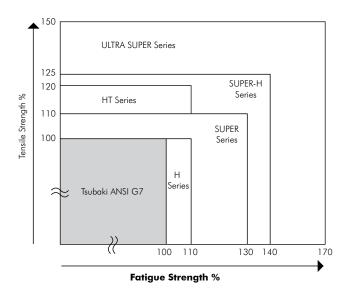
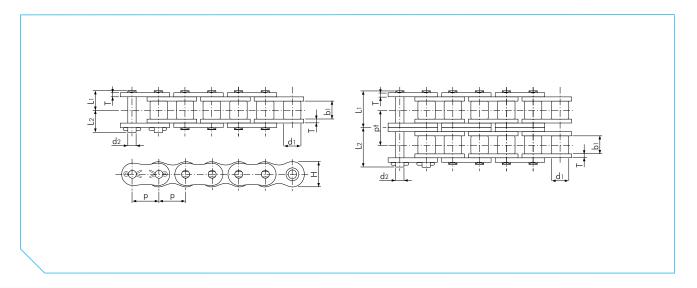
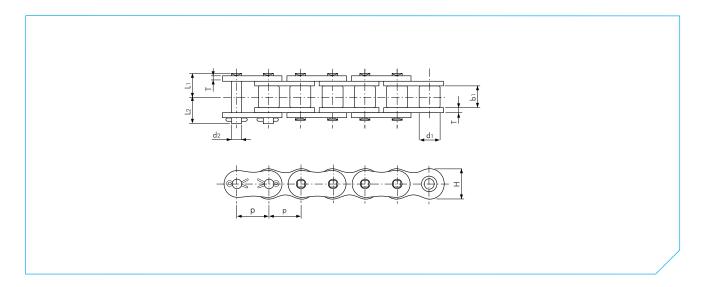



Fig. 16 Comparison of Tensile Strength / Fatigue Strength

ANSI HEAVY DUTY ROLLER CHAIN

H Series

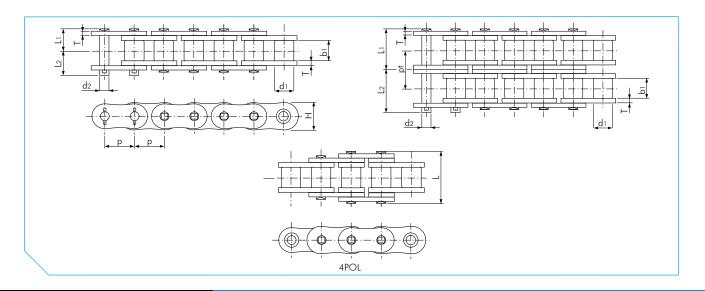

Dimensions in mm

						Pin		Link	Plate			
TSUBAKI		Pitch	Roller Diameter	Inner Width	Diameter	Length	Length	Thickness	Height	Transverse Pitch	Min. Tensile Strength acc. to Tsubaki	Approx. Mass
Chain No.		р	d1	b1	d2	L1	L2	T	H (max)	pt	kN	kg/m
RS60-H-1 RS60-H-2	19.05	(3/4")	11.91	12.70	5.96	14.80 27.80	17.00 29.90	3.20	18.10	- 26.10	40.2 80.4	1.80 3.59
RS80-H-1 RS80-H-2	25.40	(1")	15.88	15.88	7.94	18.30 34.60	20.90 37.20	4.00	24.10	- 32.60	71.6 143.0	3.11 6.18
RS100-H-1 RS100-H-2	31.75	(1 1/4")	19.05	19.05	9.54	21.80 41.40	24.50 44.10	4.80	30.10	- 39.10	107.0 214.0	4.58 9.03
RS120-H-1 RS120-H-2	38.10	(1 1/2")	22.23	25.40	11.11	26.95 51.40	30.55 55.00	5.60	36.20	- 48.90	148.0 296.0	6.53 12.90
RS140-H-1 RS140-H-2	44.45	(1 3/4")	25.40	25.40	12.71	28.90 55.00	33.10 59.50	6.40	42.20	- 52.20	193.0 386.0	8.27 16.38
RS160-H-1 RS160-H-2	50.80	(2")	28.58	31.75	14.29	33.95 64.90	38.45 69.60	7.15	48.20	- 61.90	255.0 510.0	10.97 21.78
RS200-H-1	63.50	(2 1/2")	39.68	38.10	19.85	42.90	48.10	9.50	60.30	-	427.0	18.41

Note

- 1. Standard ANSI sprockets can be used for single strand chain.
- 2. Multi strand chains need special sprockets, contact Tsubaki for more detailed information.
- 3. Sprockets with a low teeth number must have hardened teeth.
- 4. Steel grade of sprockets must be C45 or higher.

ANSI HEAVY DUTY ROLLER CHAIN

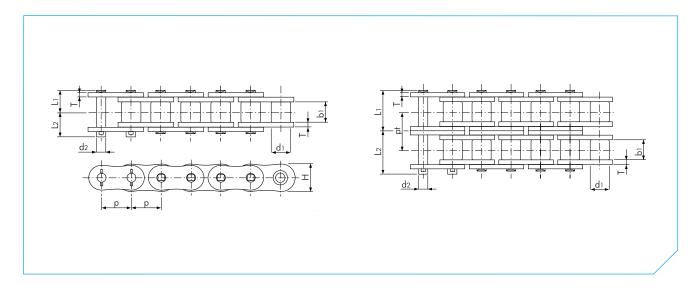

HT Series

Dimensions in mm

										Dimensions in in		
					Pin			Link Plate		4		
TSUBAKI		Pitch	Roller Diameter	Inner Wid t h	Diameter	Length	Length	Thickness	Height	Min. Tensile Strength acc. to Tsubaki	Av. Tensile Strength acc. to Tsubaki	Approx. Mass
Chain No.	р		d1	b1	d2	Li	L2	Т	H (max)	kN	kN	kg/m
RS60-HT-1	19.05	(3/4")	11.91	12.70	5.96	14.80	17.00	3.20	18.10	48.1	55.9	1.80
RS80-HT-1	25.40	(1″)	15.88	15.88	7.94	18.30	20.90	4.00	24.10	81.4	93.2	3.11
RS100-HT-1	31.75	(1 1/4")	19.05	19.05	9.54	21.80	24.50	4.80	30.10	124.0	142.0	4.58
RS120-HT-1	38.10	(1 1/4")	22.23	25.40	11.11	26.95	30.55	5.60	36.20	167.0	191.0	6.53
	44.45		25.40	25.40	12.71	28.90	33.10	6.40	42.20	218.0	250.0	8.27
RS140-HT-1		(1 3/4")	4	4					4	•		
RS160-HT-1	50.80	(2")	28.58	31.75	14.29	33.95	38.45	7.15	48.20	278.0	319.0	10.97
RS200-HT-1	63.50	(2 1/2")	39.68	38.10	19.85	42.90	48.10	9.50	60.30	486.0	559.0	18.41
RS240-HT-1	76.20	(3")	47.63	47.63	23.81	54.80	62.30	12.70	72.40	768.0	883.0	29.13

- 1. Semi press-fit type connecting links are supplied.
- 2. Standard ANSI sprockets can be used for single strand chain.
- 3. Sprockets with a low teeth number must have hardened teeth.
- 4. Steel grade of sprockets must be C45 or higher.
- 5. Multi strand chains are available on request.
- 6. Pins are quad riveted.
- 7. RS240-HT uses a spring pin for the connecting link.

ANSI HEAVY DUTY ROLLER CHAIN

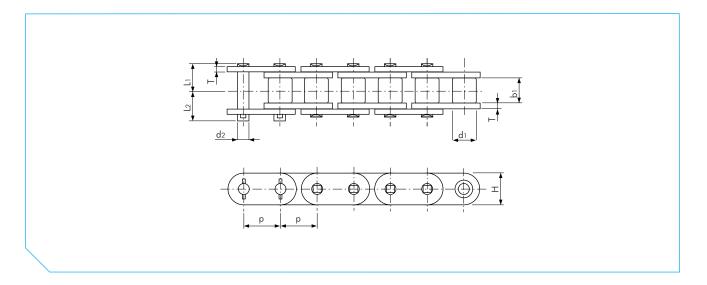

SUPER Series

Dimensions in mm

						P	in		Link	Plate				
TSUBAKI	Pi	tch	Roller Diameter	Inner Width	Diameter	Length	Length	Length	Thickness	Height	Transverse Pitch	Min. Tensile Strength acc. to Tsubaki	Strength acc. to Tsubaki	Approx. Mass
Chain No.		р	d1	b1	d2	L1	L2	L	T	H (max)	pt	kN	kN	kg/m
RS80-SUP-1 RS80-SUP-2	25.40	(1″)	15.88	15.88	7.94	16.25 30.90	19.25 33.90	39.30	3.20	24.10	29.30	74.2 148.0	85.3 171.0	2.81 5.62
RS100-SUP-1 RS100-SUP-2	31.75	(1 1/4")	19.05	19.05	9.54	19.75 37.70	22.85 40.80	48.00	4.00	30.10	- 35.80	111.0 222.0	127.0 255.0	4.25 8.38
RS120-SUP-1	38.10	(1 1/2")	22.23	25.40	11.11	24.90	28.90	59.90	4.80	36.20	-	162.0	186.0	6.30
RS120-SUP-2 RS140-SUP-1	44.45	(1.2/4")	25.40	25.40	12.71	47.60 26.90	51.60 31.70	65.70	5.60	42.20	45.40	324.0 213.0	373.0 245.0	12.44 8.04
RS160-SUP-1	50.80	(1 3/4")	28.58	31.75	14.29	31.85	36.85	77.20	6.40	48.20	-	273.0	314.0	10.79
RS200-SUP-1	63.50	(2 1/2")	39.68	38.10	19.85	39.00	44.80	94.90	8.00	60.30	-	439.0	505.0	17.63
RS240-SUP-1	76.20	(3")	47.63	47.63	23.81	47.90	55.50	116.00	9.50	72.40	-	639.0	735.0	25.63

- 1. When a 4POL is used, please calculate a 10% reduction of the fatigue strength.
- 2. Standard ANSI sprockets can be used.
- 3. Pins are quad riveted.

ANSI HEAVY DUTY ROLLER CHAIN


SUPER-H Series

Dimensions in mm

						Pin		Link	Plate				
											Min. Tensile Strength	Av. Tensile Strength	
			Roller	Inner						Transverse	acc. to	acc. to	Approx.
TSUBAKI		Pitch	Diameter	Width	Diameter	Length	Length	Thickness	Height	Pitch	Tsubaki	Tsubaki	Mass
Chain No.		р	d1	b1	d2	L1	L2	T	H (max)	pt	kN	kN	kg/m
RS80-SUP-H-1	25.40	(1")	15.88	15.88	7.94	18.30	20.90	4.00	24.10	-	85.3	98.1	3.29
RS80-SUP-H-2		······································				34.60	37.20			32.60	171.0	196.0	6.52
RS100-SUP-H-1	31.75	(1 1/4")	19.05	19.05	9.54	21.80	24.50	4.80	30.10	-	127.0	145.0	4.88
RS100-SUP-H-2	00.10	(2.2.60)		05.40		41.40	44.10		0 / 00	39.10	253.0	290.0	9.51
RS120-SUP-H-1	38.10	(1 1/2")	22.23	25.40	11.11	26.95	30.55	5.60	36.20	-	171.0	196.0	6.94
RS140-SUP-H-1 RS160-SUP-H-1	44.45	(1 3/4")	25.40 28.58	25.40 31.75	12.71 14.29	28.90 33.95	33.10 38.45	6.40 7.15	42.20 48.20	-	222.0 281.0	255.0	8.88 11.72
RS200-SUP-H-1	50.80 63.50	(2")	39.68	38.10	14.29	42.90	48.10	7.15 9.50	60.30		520.0	324.0 598.0	19.68
RS240-SUP-H-1	76.20	(2 1/2")	47.63	47.63	23.81	54.80	62.30	12.70	72.40	-	802.0	922.0	30.47
K3Z4U-3UP-II-1	76.20	(3")	47.03	47.03	23.01	54.60	02.30	12./0	72.40	-	802.0	922.0	30.47

- 1. Offset links are not available.
- 2. Press-fit type connecting links are supplied.
- 3. Standard ANSI sprockets can be used with single strand chain only.
- 4. Sprockets with a low teeth number must have hardened teeth.
- 5. Steel grade of sprockets must be C45 or higher.
- 6. Multi strand chains need special sprockets, contact Tsubaki for more detailed information.
- 7. Pins are quad riveted.

ANSI HEAVY DUTY ROLLER CHAIN

ULTRA SUPER Series

Dimensions in mm

						Pin		Link	Plate			
TSUBAKI Chain No.		Pitch	Roller Diameter d1	Inner Width b1	Diameter d2	Length L1	Length L2	Thickness T	Height H (max)	Min. Tensile Strength acc. to Tsubaki kN	Av. Tensile Strength acc. to Tsubaki kN	Approx. Mass kg/m
RF100-US-1	31.75	(1 1/4")	19.05	19.05	10.32	22.35	25.35	4.80	30.10	149.0	172.0	5.07
RF120-US-1	38.10	(1 1/2")	22.23	25.40	12.28	27.55	31.55	5.60	36.20	213.0	245.0	7.22
RF140-US-1	44.45	(1 3/4")	22.23 25.40	25.40	13.97	29.50	34.20	6.40	42.20	273.0	314.0	9.24
RF160-US-1	50.80	(2")	28.58	31.75	15.62	34.50	40.20	7.15	48.20	341.0	392.0	12.19
	00.00	(=)	20.00	01.70	10.02	01.00	10.20	7.10	10.20	011.0	0,2.0	,

Note

- 1. Standard ANSI sprockets can be used if the sprocket teeth have been hardened.
- 2. Steel grade of sprockets must be C45 or higher.
- 3. Offset links are not available.
- 4. Multi-strand chains are not available.
- 5. Press-fit type connecting links are supplied.
- 6. Pins are quad riveted.

ANSI LOW NOISE ROLLER CHAIN

Technical Evolution

TSUBAKI's uniquely structured spring rollers are used for chain rollers. When TSUBAKI's Low Noise roller chain engages the sprocket, the spring roller deforms and absorbs the force of impact, reducing impact noise between chain and sprocket. Compared with TSUBAKI's standard roller chain, noise levels of Low Noise Roller Chain are 6 - 8 dB lower. Working temperature range: -10°C to +60°C. Allowable chain speed: 200 m/min.

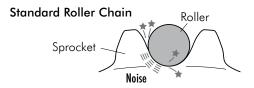
Advantages

Noise Reduction

Lower noise levels increase comfort levels in the workplace. Besides, lower noise levels also eliminate the need for costly, soundproof enclosures.

Stronger than Belts

In some applications, belts are considered as a countermeasure to noise. However, there are many limitations in terms of strength when considering belts. The TSUBAKI Low Noise roller chain is perfect for applications where the strength of a roller chain is needed without the accompanying noise.


Inter-Changeability

Chains:

TSUBAKI Low Noise roller chain is directly interchangeable with ANSI standard roller chain.

Sprockets:

Standard ANSI roller chain sprockets can be used. However, if the chain cannot be sufficiently lubricated, TSUBAKI recommends installing sprockets with hardened teeth.

Low Noise Drive Chain

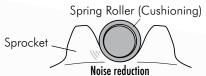
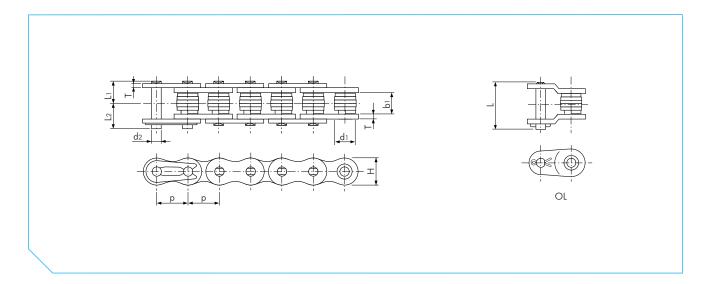



Fig. 17 Cushioning Effect

ANSI LOW NOISE ROLLER CHAIN

ANSI SNS Chain

Dimensions in mm

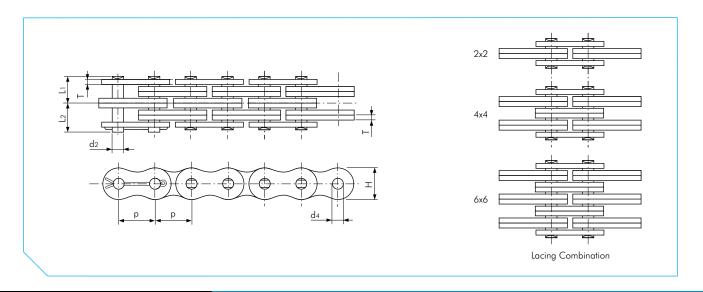
						P	in		Link	Plate	14:			
TSUBAKI	Pit	al.	Roller Diameter	Inner Width	Diameter	Length	Length	Length	Thickness	Height	Min. Tensile Strength acc. to ANSI	Min. Tensile Strength acc. to Tsubaki	Av. Tensile Strength acc. to Tsubaki	Approx. Mass
Chain No.														
	10.70		d1	b1	d2	L1	L2	L	T	H (max)	kN	kN	kN	kg/m
RS40-SNS-1	12.70	(1/2")	8.50	7.95	3.97	8.25	9.95	18.00	1.50	12.00	13.9	17.7	19.1	0.64
RS50-SNS-1	15.875	(5/8")	10.80	9.53	5.09	10.30	12.00	22.50	2.00	15.00	21.8	28.4	31.4	1.04 1.53
RS60-SNS-1	19.05	(3/4")	12.60	12.70	5.96	12.85	14.75	28.20	2.40	18.10	31.3	40.2	44.1	
RS80-SNS-1	25.40	(1")	16.80	15.88	7.94	16.25	19.25	36.00	3.20	24.10	55.6	71.6	78.5	2.66

- 1. Connecting links are clip type for sizes RS40-SNS to RS60-SNS, and cotter type for size RS80-SNS.
- $2. \ \ When a single pitch offset link is used, please calculate a 35\% \ reduction of the \ Fatigue \ Strength.$
- 3. Standard ANSI sprockets can be used.

ANSI LEAF CHAIN

Plates are connected by pins and hold the tension loaded on the chain.

AL Type

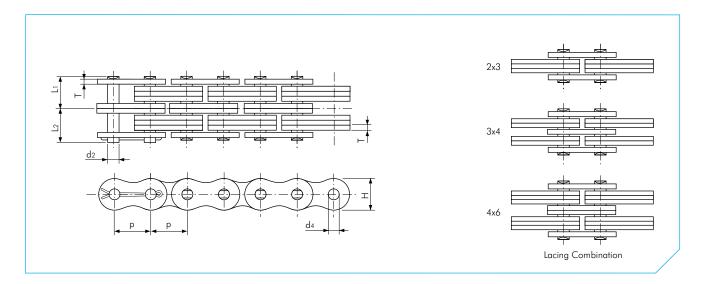

Plate configuration and thickness are the same as ANSI G7 roller chain. Pin diameter is almost the same as ANSI G7 roller chain.

BL Type

BL Series leaf chains consist of link plates which are thicker and larger in contour than the AL Series link plates of the same pitch. The link plates have the same thickness as the link plates of the next larger pitch size in ANSI G7 roller chains. The pins have the same diameter as those of ANSI G7 roller chains of the next larger pitch.

ANSI LEAF CHAIN

AL Type


Dimensions in mm

					Pin			Link Plate			1310113 111 111111
			Lacing						Hole	Min. Tensile Strength	Арргох.
TSUBAKI		Pitch	Combination	Diameter	Length	Length	Thickness	Height	Diameter	acc. to Tsubaki	Mass
Chain No.		р	LC	d2	L1	L2	Т	H (max)	d4	kN	kg/m
AL 422 AL 444 AL 466	12.70	(1/2")	2 x 2 4 x 4 6 x 6	3.96	4.20 7.43 10.65	5.30 8.52 11.75	1.50	10.40	4.02	16.7 33.3 50.5	0.38 0.74 1.10
AL 522		····	2 x 2		5.43	6.97				27.5	0.62
AL 544 AL 566	15.875	(5/8")	4 x 4 6 x 6	5.08	9.68	11.22	2.00	13.00	5.13	54.9 82.4	1.22
AL 622		.	2 x 2		6.33	8.22				38.2	0.87
AL 644	19.05	(3/4")	4 x 4	5.94	11.28	13.17	2.40	15.60	6.00	76.5	1.71
AL 666			6 x 6		16.23	18.12				115.0	2.54
AL 822			2 x 2		8.18	10.97				64.7	1.51
AL 844	25.40	(1")	4 x 4	7.90	14.90	17.70	3.20	20.80	7.97	129.0	2.98
AL 866		.	6 x 6		21.60	24.40				194.0	4.44
AL 1022	01.75	(2.2 (40)	2 x 2	0.40	10.03	13.22	4.00	04.00	0.57	98.1	2.69
AL 1044	31.75	(1 1/4")	4 x 4	9.48	18.35 26.65	21.55	4.00	26.00	9.57	196.0	5.31
AL 1066 AL 1222		····•	6 x 6 2 x 2		12.10	29.85 15.80				294.0 141.0	7.93 3.57
AL 1222	38.10	(1 1/2")	4 x 4	11.04	22.00	25.70	4.80	31.20	11.14	282.0	7.07
AL 1266	30.10	(1 1/2)	6 x 6	11.04	31.93	35.62	4.00	01.20	11.14	424.0	10.56
AL 1444			4 x 4		25.65	30.15				373.0	10.34
AL 1466	44.45	(1 3/4")	6 x 6	12.64	37.28	41.77	5.60	36.40	12.74	559.0	15.16
AL 1644	50.80	(2")	4 x 4	14.21	29.03	34.02	6.40	41.60	14.32	471.0	12.98
AL 1666	30.60	(2)	6 x 6	14.21	42.23	47.22	0.40	41.00	14.52	706.0	19.41

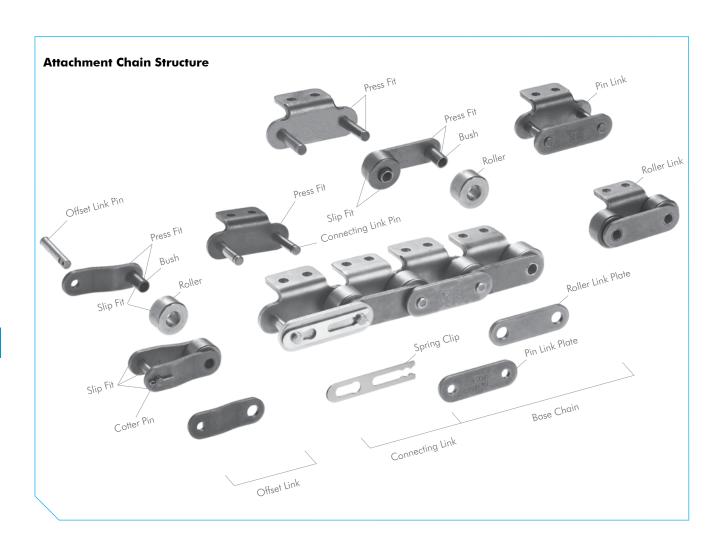
Note

1. For more detailed information regarding clevises and sheaves, please contact Tsubaki.

ANSI LEAF CHAIN

BL Type

Dimensions in mm


					Pin			Link Plate			
										Min. Tensile	
			Lacing						Hole	Strength	Approx.
TSUBAKI	Pito	:h	Combination	Diameter	Length	Length	Thickness	Height	Diameter	acc. to Tsubaki	Mass
Chain No.	р		LC	d2	L1	L2	T	H (max)	d4	kN	kg/m
BL 422			2 x 2		5.44	6.99				23.5	0.68
BL 423			2 x 3		6.48	8.02				23.5	0.84
BL 434	12.70	(1/2")	3 x 4	5.08	8.61	10.15	2.00	12.00	5.13	35.3	1.13
BL 444 BL 446			4 x 4 4 x 6		9.70 11.80	11.25 13.35				47.1 47.1	1.28 1.65
BL 446			6 x 6		13.89	15.44				70.6	1.96
BL 522	······································		2 x 2		6.32	8.23				39.2	1.07
BL 523			2 x 3		7.55	9.45				39.2	1.27
BL 534	15.075	/5 /O/D	3 x 4	5.05	10.05	11.95	0.40	15.00		58.8	1.69
BL 544	15.875	(5/8")	4 x 4	5.95	11.28	13.18	2.40	15.00	6.00	78.5	1.89
BL 546			4 x 6		13.75	15.65				78.5	2.40
BL 566			6 x 6		16.23	18.14				118.0	2.80
BL 622			2 x 2		8.20	11.02				63.7	1.68
BL 623			2 x 3		9.88	12.67				63.7	2.04
BL 634	19.05	(3/4")	3 x 4	7.93	13.23	16.02	3.20	18.10	7.97	95.6	2.83
BL 644		, ,	4 x 4		14.91	17.70				127.0	3.18
BL 646 BL 666			4 x 6		18.25	21.05				127.0	4.01
BL 822	•		6 x 6 2 x 2		21.62 10.08	24.41 13.28				191.0 103.0	4.73 2.59
BL 823			2 x 3		12.10	15.30				103.0	3.20
BL 834			3 x 4		16.28	19.47				155.0	4.44
BL 844	25.40	(1")	4 x 4	9.48	18.47	21.67	4.00	24.10	9.57	206.0	5.04
BL 846			4 x 6		22.50	25.70				206.0	6.32
BL 866			6 x 6		26.64	29.85				309.0	7.54
BL 1022	•		2 x 2		11.99	15.67				141.0	3.76
BL 1023			2 x 3		14.45	18.15				141.0	4.69
BL 1034	31.75	(1 1/4")	3 x 4	11.04	19.43	23.12	4.80	30.10	11.14	216.0	6.55
BL 1044	01.70	(, . ,	4 x 4		21.69	25.37		55.15		282.0	7.48
BL 1046			4 x 6		26.85	30.55				282.0	9.29
BL 1066			6 x 6		31.93	35.61				424.0	11.16
BL 1222 BL 1223			2 x 2		14.02	18.54				186.0 186.0	4.83
BL 1234			2 x 3 3 x 4		16.95 22.75	21.45 27.25				299.0	6.54 9.10
BL 1244	38.10	(1 1/2")	4 x 4	12.64	25.65	30.18	5.60	36.20	12.74	373.0	10.39
BL 1246			4 x 6		31.48	35.97				373.0	12.01
BL 1266			6 x 6		37.29	41.81				559.0	14.58
BL 1422	······································		2 x 2		15.82	20.83				235.0	7.31
BL 1423			2 x 3		19.10	24.10				235.0	9.06
BL 1434	44.45	(1.3/4")	3 x 4	14.21	25.70	30.70	6.40	42.20	14.32	387.0	11.32
BL 1444	44.45	(1 3/4")	4 x 4	14.21	29.03	34.04	0.40	42.20	14.32	471.0	12.96
BL 1446			4 x 6		35.63	40.62				471.0	18.00
BL 1466			6 x 6		42.24	47.24				706.0	22.51
BL 1622			2 x 2		17.81	24.41				353.0	9.84
BL 1623			2 x 3		21.63	28.22				353.0	12.16
BL 1634 BL 1644	50.80	(2")	3 x 4 4 x 4	17.38	29.20 32.94	35.80 39.55	7.20	48.20	17.49	554.0 706.0	16.95 18.97
BL 1646			4 x 4		40.53	47.12				706.0	24.09
BL 1666			6 x 6		48.08	54.69				1060.0	28.73
22 1000			0 7 0		10.00	04.07			1	1000.0	20.70

^{1.} For more detailed information regarding clevises and sheaves, please contact Tsubaki.

TSUBAKI DRIVE CHAIN APPLICATION CHECK SHEET

Company name:	Tel. no.		
Contact person:	Fax no.		
1) Description of machine			
2) Requirement	☐ New design	☐ Replacement	☐ Investigation
3) Current drive (for replacement & investigation)			
Chain size:			
No. of links:			
No. of drive sprocket teeth:			
No. of driven sprocket teeth:			
4) Operation time hours per day	days per we	ek	_ weeks per year
5) Please complete either A or B			
А		В	
Torque of motor output shaft (Rated) (N/m)	Type of motor:		
(lay-out)	Rated output:(kW)		
	Output of reducer:		(N/m)
	Reduction ratio:		
	RPM of driver shaft:		(1/min.)
	RPM of driven shaft:		(1/min.)
6) Does the drive use a fluid coupling or other soft-start/stop feato	ure?	☐ Yes	□ No
7) Shaft centre distance:			
8) Load fluctuations	□ smooth	☐ some impact	☐ large impact
9) Frequency of starting (stopping) or forward (reverse) operation.			Times/day(8h)
Note - for wrapping transmission drives, suspension drive, bogie traction o	r pin gear drives with >	5 times per day, please o	complete 10-13
10) Moment of inertia of the motor (GD ²):			(kg/m²)
11) Converted moment of inertia for the driven shaft (GD ²):			(kg/m²)
12) Starting torque:			(N/m)
13) Stalling torque:			(N/m)
14) Acceleration and deceleration:			(m/sec²)
15) Lubrication condition:	☐ With lubrication	☐ Without lubricatio	n
16) Ambient temperature:			
17) Atmosphere (corrosiveness, humidity, acid/alkaline etc.):			
18) Diameter of drive and driven shaft:	Drive shaft	(mm), Driven sh	aft (mm)
1			

Please complete and return to Tsubakimoto Europe B.V. on fax: +31-(0)78 6204001

Attachment Chain Structure

There are mainly two types of Attachment Chain: Single Pitch and Double Pitch.

1. Single Pitch Attachment Chain

Single pitch attachment chains are based on roller chains with attachments added to make them suitable for conveying use. Due to the smaller chain pitch, this type of chain is ideal for short centre distances, and the conveying of small and light goods. Single pitch attachment chain has smooth transfer and low noise characteristics and can be used at relatively medium conveying speeds. Standard roller chain sprockets can be used in most cases.

Fig. 1 Single Pitch Attachment Chain

2. Double Pitch Attachment Chain

This is the most commonly used attachment chain and is utilised widely in the automotive parts, electric, electronic, and precision machinery industries. Double pitch roller chain has the same basic construction as single pitch roller chain, but has twice the pitch length. A major benefit is that whilst larger conveyor lengths are possible, a double pitch chain uses only half the components of a single pitch chain in the same application, resulting in less components to wear.

The choice of sprockets depends on the roller type applied to the chain. Chain with S-type rollers can be driven by standard roller chain sprockets (> 30 teeth). The chain engages every second tooth. Special sprockets are needed when R-type rollers are used.

Fig. 2 Double Pitch Attachment Chain

3. Three Basic Dimensions

Pitch, Roller Diameter and Inner Width are known as the "Three Basic Dimensions of Roller Chain." When these three dimensions are identical to the existing chain being replaced, then the roller chain and sprockets are dimensionally compatible. With attachment chain a lot of additional dimensions are important to ensure a safe replacement and carefree installation of the chain. Please refer to our dimension tables for the appropriate dimensions.

4. Basic Parts

Link Plate

The link plate is the component that bears the tension placed on the chain. Usually this is a repeated load, sometimes accompanied by shock. Therefore, the plate must not only have great static tensile strength, it must also hold up to the dynamic forces of load and shock.

Pin

The pin is subject to shearing and bending forces transmitted by the plate. At the same time, it forms a load-bearing part (together with the bush) when the chain flexes during sprocket engagement. Therefore, the pin needs high tensile and shear strength, resistance to bending, and must also have sufficient endurance against shock and wear.

Bush

The bush is subject to complex forces from all parts, especially from the repetition of shock loads when the chain engages with the sprocket. Therefore, the bush needs extremely high shock resistance. In addition, the bush forms a load-bearing part together with the pin and as such requires great wear resistance.

Roller

The roller is subject to impact load as it mates with the sprocket tooth during engagement of the chain with the sprocket. After engagement, the roller changes its point of contact and balance. It is held between the sprocket tooth and bush, and moves on the tooth face whilst receiving a compression load. Therefore, it must be resistant to wear and still have strength against shock, fatigue and compression.

There are two types of rollers for Double Pitch Attachment chain: S-roller (standard) and R-roller (oversized). The S-rollers are used in short-length and slow-speed conveying. The R-rollers are most commonly used for longer conveying applications. (RS35 is a bush chain and does not have rollers).

Roller Link

Two bushes are press fit into two roller link plates and rollers are inserted to allow rotation around the outside of the bushes during operation. This is the same for single and for multi strand chains.

Pin Link

The pin link consists of two pins that have been press fit into two pin link plates.

Spring Clip and Cotter Pin

The spring clip prevent the link plate from becoming detached, with the cotter pin type being as an added security measure where there is as possibly of the clip being removed due to interference from chain guides or some other aspect of the application.

5. Assembly Parts

Roller chains are usually made up of a number of inner and outer links in an endless formation. Although offset links can be used when there is an odd number of links in the roller chain, it is better to use a design that requires an even number of links, thus eliminating the use of offset links.

Connecting Links

There are two types of connecting link: spring clip connecting link and cotter pin connecting link. It's common to use slip fit spring clip connecting links for small size attachment chains. Cotter pin connecting links are used for large size attachment chains and on customer request.

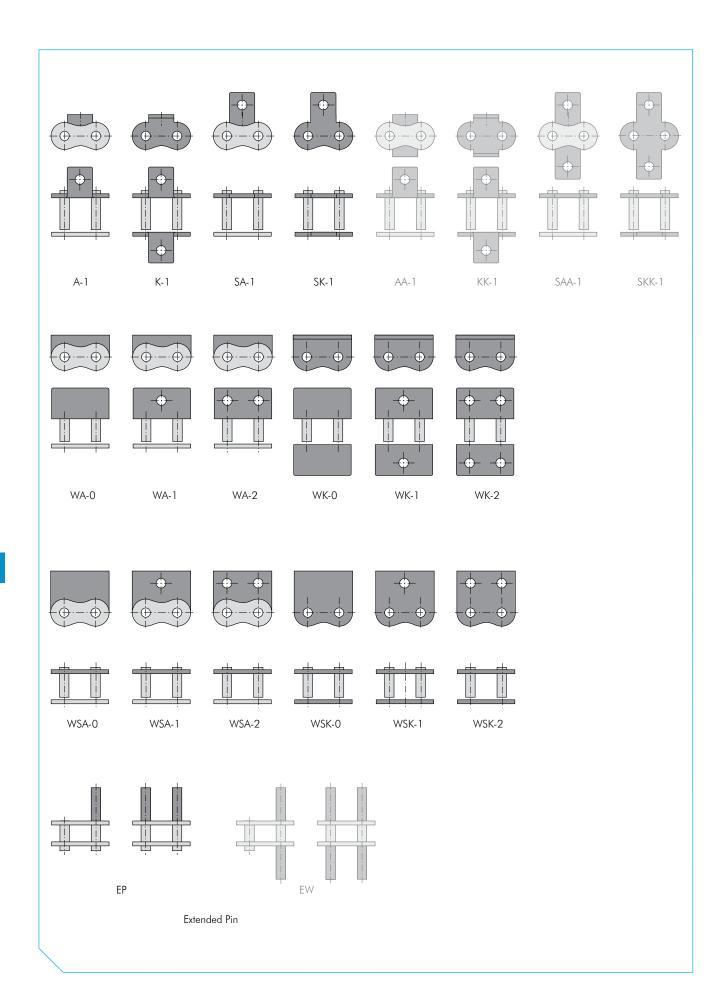
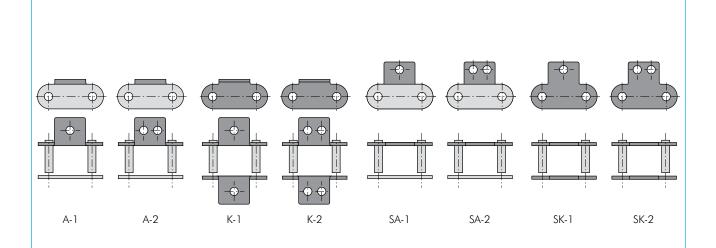
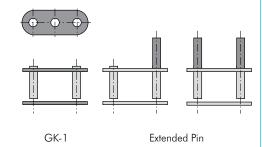




Fig. 3 Overview Single Pitch Attachment Types

Chain Types

In addition to standard single and double pitch attachment chain, two other chain types are commonly used for conveyance purposes:

Hollow Pin Chain (HP)

This particular design of chain has a hollow bearing pin allowing for the installation of various attachments. Usually these chains are used for conveyors. The advantages of installing attachments into the hollow pin include the following:

- The hollow pin is at the centre of articulation, and always keeps the pitch length. Regardless of whether the chain is straight or wrapping around the sprocket, the centre distance of attachments is always the same.
- With a cross rod over two chains, the load from the attachments is distributed equally between the link plates. The chain can fully utilise its strength and will not twist.
- It is easy to change, maintain, and adjust attachments.
- Standard sprockets are used for the single pitch series. For double pitch series, standard sprockets for double pitch roller chain are used.

Fig. 5 Hollow Pin Chain

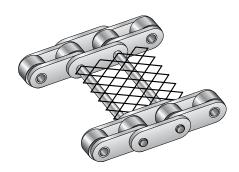


Fig. 6 Cross Rods with Mesh

Curved Chain (CU)

Due to TSUBAKI's exclusive pin and bush structure and the wide plate to plate clearance, this roller chain has a large side flex radius. The basic dimensions of this chain are the same as ANSI standard roller chain. The ability to use ANSI standard sprockets makes curved transmission simple. Guides are required for all curved areas.

Attachments

The characteristics of the conveyed materials and the working environment are different for each application. Many types of attachments are available with or without jigs.

Our standard attachments are available based upon the long history of attachment chain usage and demand. Being high quality, economical with a quick delivery to meet customers' requirements.

- For Single Pitch attachment chain, standard attachments include: A, WA, K, WK, SA, WSA, SK, WSK and Extended Pin types.
- For Double Pitch attachment chain, standard attachments include: A, K, SA, SK, GK-1 and Extended Pin types.

In figures 3 and 4 you can find an overview of the most common attachment types.

Standard attachments are available for a wide variety of chains:

- With special surface treatments (N.E.P. or Nickel-Plated).
- Made of 304 stainless steel or other materials.
- For lube-free operations (LAMBDA and PC series, etc.).

W-Designation

Attachments with W-designation only differ in the width of the bent or extended part of the link plate. The width of W-attachments is equal to the width of the link plate.

The W-type option is only applicable on the four standard attachments: A, K, SA and SK (referenced WA, WK, WSA and WSK respectively).

There are no W-type attachments available for double pitch attachment chains.

A Attachment

An A attachment is the most commonly used. It has a bent link plate that extends out on one side of the chain, forming an L-shape. It comes with one or two bolt holes, referred to as A-1 or A-2. The attachment interval can vary (for example, on each chain link, every five links, or two attachments in a series with intervals every four links, etc.). Generally two strands of chain are used in parallel with slats (Figure 8).

Fig. 7 A-1 Attachment

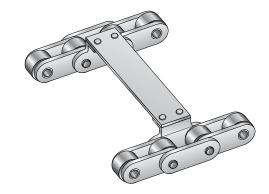


Fig. 8 A-2 Attachment with Slat

The attachments are subject to bending force. If they convey heavy objects, have long jigs installed, or receive side loads,

twisting force is added to the bending force. Depending on the application, please ensure you consider these forces in your calculations.

The shape of the attachment influences the design of the equipment. If slats do not cover the chain rollers, guide rails may be used to support the chain rollers on the return side.

K Attachment

This is an attachment made by installing A attachments on both sides of the chain. The attachment is called K-1 or K-2 based on the number of bolt holes on each individual attachment. The attachment interval can vary, same as the A attachment (Figure 9).

Fig. 9 K-1 Attachment

The top of the attachment is higher than the R-rollers, so slats or jigs can be installed over the chains (Figure 10). Objects can also be conveyed directly on the K attachments.

When a wide slat is installed on two A attachment chains, the slats may not be able to support the weight. A chain with K attachments is installed between the A attachment chains to help support the load.

When the slats are rigid enough and are fastened well to the attachments, there is almost no effect from bending force to the strength of the attachment. But if the slat is not fastened well, make sure to consider the bending force in your calculation.

If long jigs are installed, or the attachment receives side loads, it will be exposed to twisting forces.

The return side of the K attachment chain cannot be supported with guide rails on the rollers. The return may be slack or supported in some other way.

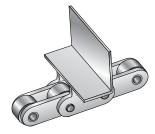


Fig. 10 K Attachment with L-angle

SA Attachment

For the SA attachment, the link plate is extended on one side of the chain, and one or two bolt holes are installed. These are called SA-1 or SA-2 depending on the number of the bolt holes (Figure 11). The attachment interval can vary the same as the A attachment. These attachments may be adapted for use with hooks or slats (Figure 12).

The SA attachment is simpler and stronger than the A attachment, and may receive bending and twisting force depending on the direction of the loads.

The return side of the chains can be supported by guide rails on the rollers unless bolts extend into the attachment.

Fig. 11 SA-1 Attachment

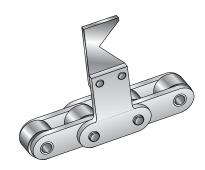


Fig. 12 SA-2 Attachments with Hook

SK Attachment

SK attachments are made by installing SA attachments on both sides of the chain. They are called SK-1 or SK-2, depending on the number of bolt holes on each individual attachment. The attachment interval can vary the same as the A attachment (Figure 13).

Usually SK attachments are used with dogs or jigs (Figure 14). SK attachments are strong enough to withstand bending or twisting forces.

The return side of SK attachment chains cannot be supported by guide rails on the rollers as can A or SA attachment chains. The return must be slack or supported in some other manner.

Fig. 13 SK-1 Attachments

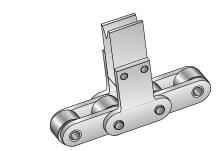


Fig. 14 SK-2 Attachments with V-block

Extended Pin Attachment

In this form, one end of the pin is extended. The attachment interval can vary the same as the A attachment (Figure 15).

As shown in Figure 16, two sets of D attachment chains can be connected to cross rods, or jigs (such as blocks).

The extended pins are subjected to bending and shearing forces. The return side of the D attachment chain can be supported by guide rails on the rollers.

Fig. 15 Extended Pin Attachment

Fig. 16 D Attachments with Jigs

GK-1 Attachment

A hole is added to the centre of both link plates, to be able to attach cross rods between two (or more) parallel running chains. The attachment interval can vary the same as the A attachment (Figure 17). This type of attachment is often used when cross rods with larger diameters than the maximum applicable diameters of hollow pin chains are used. This type of attachment is only available as a double pitch attachment chain, Type R-rollers can not be used in combination with GK-1 attachments due to the interference between the roller and the hole in the link plates.

Fig. 17 GK-1 Attachment

Chain Length Tolerance

Maintaining an accurate overall length tolerance in attachment chain is essential for conveying and index drive equipment used in such applications as inserting components, product assembly lines, integrated circuit boards and board/paper & packaging amongst many others.

The tolerance of the overall chain length is depending on the chain type and the appropriate international standard:

Single Pitch Chain

- BS Single Pitch Roller Chain According to ISO 606: 0% to +0.15%
- BS Single Pitch Attachment Chain According to ISO 606: 0% to +0.30%
- ANSI Single Pitch Roller Chain According to ANSI: 0% to +0.15%
- ANSI Single Pitch Attachment Chain According to ANSI: 0% to +0.30%

Double Pitch Chain

- ANSI Double Pitch Roller Chain According to ANSI: 0% to +0.13%
- ANSI Double Pitch Attachment Chain According to ANSI: 0% to +0.25%

TSUBAKI chain length tolerances are very narrow by nature, however some markets require narrow tolerance chain; in the market often referred to, and marketed as 1/3 DIN or 1/6 DIN length tolerance chain. TSUBAKI chain coming from the same production lot is generally complying with these tolerances as a standard; once again our constant high quality.

Figure 18 shows the amount of variation for several types of chain chosen at random from the same production run.

Chain Length [mm]	Matched Tolerance [mm]
< 14 m	< 3 mm
14~30 m	< 4 mm
30∼44 m	< 5 mm

Fig. 18 Attachment Chains Chosen at Random from Same Production Lot

When even more accurate tolerances are required, TSUBAKI can offer an effective solution with the Match & Tag Service. This can be useful for attachment chains which have to run parallel in pairs and where a minimum of chain length tolerance is required.

Match & Tag Service: High Accuracy, Narrow Tolerance Service

For TSUBAKI quality is second nature- and so for customers with specific application requirements, we are able to supply chains with a specific length tolerance, or even pairs & multiple chains length matched and tagged in the same way for easy identification and installation. This is as a result of the sophisticated chain length measurement equipment (the "Matchy") kept in house within the European headquarters with supply times for such chains kept to a minimum-ideal for distributors, final consumers and OEM customers alike.

Sizes

The Matchy at our European Headquarters is equipped for:

- BS Single Pitch sizes RS08B to RS32B
- ANSI Single Pitch sizes RS40 to RS100 (including Heavy Duty Series)
- ANSI Double Pitch sizes RF2040 to RF2100

For other sizes and specific demands please contact TSUBAKI, our Engineering Department will explain all options available.

Tolerances

When chains have to run in parallel for conveying purposes in for instance packaging machines or when a minimum of difference

Technical Evolution

As a pioneer in the lube-free chain market, TSUBAKI will reveal some of the key elements behind BS LAMBDA's outstanding performance:

Sintered Bush

A special oil-impregnated sintered bush in combination with a special coated pin for long-term internal lubrication is the secret of TSUBAKI BS LAMBDA's long economic life and wear resistance.

Temperature and Lubrication

TSUBAKI BS LAMBDA has outstanding performance in temperatures up to $+150^{\circ}$ C.

For temperatures above $+150^{\circ}\text{C}$: Due to the special NSF-H1 certified lubrication impregnated bushes, TSUBAKI BS LAMBDA KF Series is usable in a wide temperature range (from -10°C to $+230^{\circ}\text{C}$), and for food product applications while at the same time being kind to the environment.

Please consult TSUBAKI for more detailed information.

Fig. 22 Basic Construction

Advantages

TSUBAKI has enhanced the BS LAMBDA with the following advantages:

Save Maintenance Costs

No expensive labour costs as it is not required to manually lubricate this chain.

Save Purchasing Costs

Lower frequency of purchasing due to the high quality of the chain and its long economic life. No purchasing of lubricants or lubrication systems necessary.

Higher Productivity

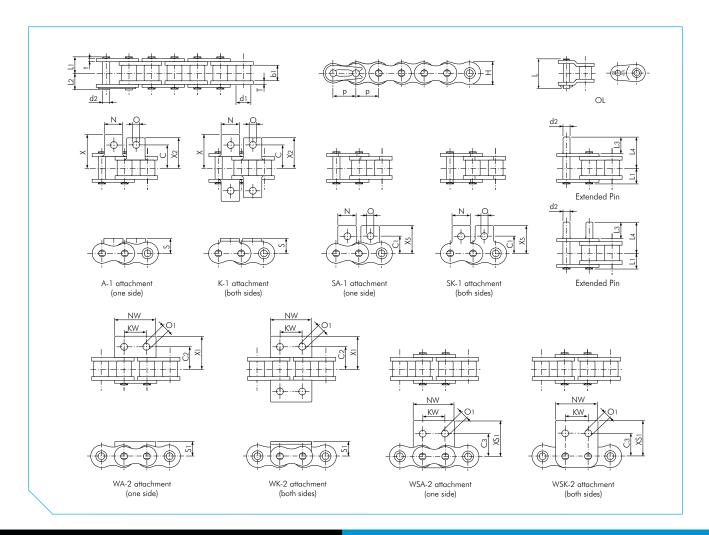
No unforeseen downtime due to chain breakage. Less time required for maintenance and therefore more time for production

Environmental Friendly

Applications run clean thus reducing the risk of contaminating products, machines, floor, etc.

Inter-Changeability

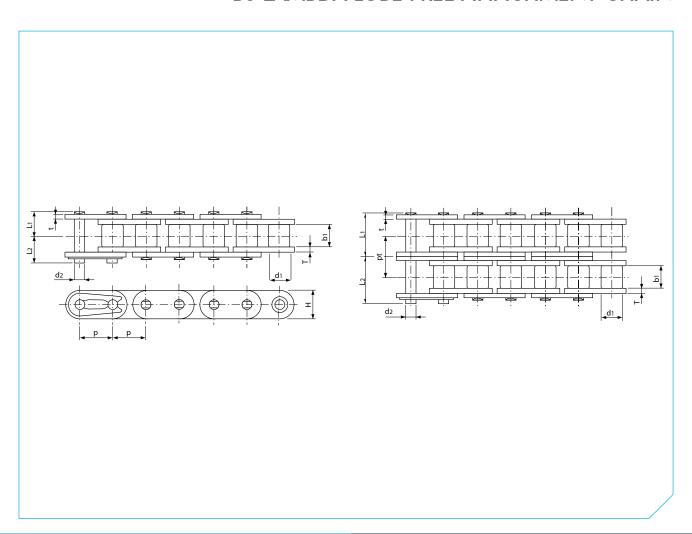
BS LAMBDA attachment chains are fully interchangeable with standard BS roller chains.


Standard Product Range

The product range for our standard LAMBDA attachment chains is:

- BS Single Pitch LAMBDA chain + standard attachments
- BS Single Pitch LAMBDA RF chain with flat shaped link plates
- ANSI Single Pitch LAMBDA chain + standard attachments
- ANSI Single Pitch LAMBDA HP Hollow Pin chain
- ANSI Double Pitch LAMBDA chain

Special attachments can be designed and manufactured to meet your specific requirements.


BS Single Pitch LAMBDA Chain

Dimensions in mm

						Р	in				Link Plate		
		Roller	Inner										Approx.
TSUBAKI	Pitch	Diameter	Width	Diameter	Length	Length	Length	Length	Length	Thickness	Thickness	Height	Mass
Chain No.	р	d1	b1	d2	Lı	L2	L3	L4	L	T	t	H (max.)	kg/m
RS08B-LM	12.70 (1/2")	8.51	7.75	4.45	8.40	10.00	14.70	22.20	18.60	1.60	1.60	11.80	0.70
RS10B-LM	15.875 (5/8")	10.16	9.65	5.08	9.55	11.25	17.80	26.15	20.80	1.50	1.50	14.70	0.95
RS12B-LM	19.05 (3/4")	12.07	11.68	5.72	11.10	13.00	20.80	30.60	24.40	1.80	1.80	16.10	1.25
RS16B-LM	25.40 (1")	15.88	17.02	8.28	17.75	19.95	33.20	49.35	41.10	4.00	3.20	21.00	2.70

																		Atta	chment I	∕lass	
							Atto	achment	Dimensi	ons							Α	K	WA	WK	Ext.
TSUBAKI																SA	SK	WSA	WSK	Pin	
Chain No.	С	C1	C2	Сз	KW	Ζ	NW	0	O1	S	S1	Х	X1	X2	XS	XS1	kg/att.	kg/att.	kg/att.	kg/att.	kg/att.
RS08B-LM	11.90	12.70	12.70	13.10	12.70	11.40	24.60	4.20	4.90	8.90	8.90	19.05	20.30	17.15	19.30	20.70	0.002	0.004	0.005	0.010	0.001
RS10B-LM	15.90	15.90	15.90	16.60	15.90	12.70	30.00	5.00	5.00	10.20	10.20	22.25	22.85	20.60	22.90	23.60	0.003	0.006	0.006	0.012	0.002
RS12B-LM	19.05	19.05 22.20 17.45 17.60 19.10 16.50 34.80 7.10 5.50 13.50 11.40 29.85 25.65 27.80 32.05													25.75	0.006	0.012	0.009	0.018	0.003	
RS16B-LM	23.80	23.90	28.60	26.00	25.40	24.30	46.00	6.70	8.10	15.20	15.90	37.35	39.25	34.40	34.10	36.70	0.014	0.028	0.030	0.060	0.008

- 1. Connecting links are clip type.
- 2. Warning: previous generations of Lambda chain cannot be connected with the above chains due to different dimensions.

BS Single Pitch LAMBDA RF Chain

Dimensions in mm

						Pin			Link Plate			
			Roller	Inner							Transverse	Approx.
TSUBAKI	Pito	:h	Diameter	Width	Diameter	Length	Length	Thickness	Thickness	Height	Pitch	Mass
Chain No.	р		d1	b1	d2	Lı	L2	T	t	Н	pt	kg/m
RF08B-LM-1 RF08B-LM-2	12.70	(1/2")	8.51	7.75	4.45	8.40 15.30	10.00 16.90	1.60	1.60	12.00	13.92	0.70 1.40
RF10B-LM-1 RF10B-LM-2	15.875	(5/8″)	10.16	9.65	5.08	9.55 17.85	11.25 19.55	1.50	1.50	14.70	- 16.59	0.95 1.90
RF12B-LM-1						11.10	13.00				-	1.25
RF12B-LM-2	19.05	(3/4")	12.07	11.68	5.72	20.85	22.75	1.80	1.70	16.10	19.46	2.60
RF16B-LM-1		4.00				17.75	19.95				-	2.70
RF16B-LM-2	25.40	(1")	15.88	17.02	8.28	33.55	35.75	4.00	3.20	24.00	31.88	5.60

- 1. Connecting links are clip type.
- 2. Intermediate plate of RF08B-LM-2 chain is a solid plate.

Construction

This chain is based on standard BS roller chain and assembled with attachments for conveying.

Key Features

- Due to the small pitch of these chains, the drive design is more compact.
- Usually sprockets with a large number of teeth are used. The
 chain speed does not vary significantly as the chain engages
 with sprockets. With less impact, there is also less noise
 generated as a result of the impact between the roller and
 sprocket tooth.
- These chains may be used for high speed conveyor applications
- A wide variety of standard and special attachments are available for this chain series.

Customised Pre-Lubrication Service

Proper lubrication is the key to extend the life and improve the performance of a chain. In order to get the best performance in general applications (-10°C to +60°C), all BS drive chains are pre-lubricated. BS attachment chains however are NOT prelubricated, but have been treated with rust preventive oil for protection and therefore need to be lubricated before the chain is installed. The reason TSUBAKI does not pre-lubricate BS attachment chains is due to the fact that attachment chains often have to function in various environments where standard lubrication cannot be used.

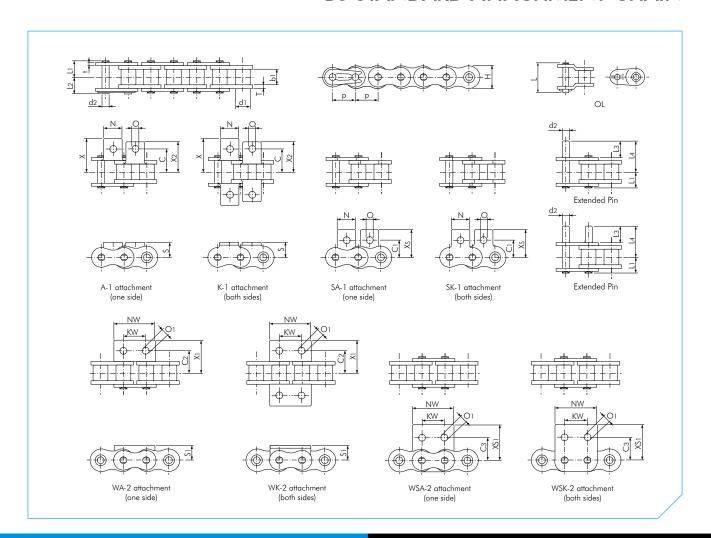
For special applications and on customer's requirement, TSUBAKI can provide attachment chains which are pre-lubricated with a special lubricant which include:

- High temperature
- Low temperature
- Food safe
- Outdoor exposure
- Dusty environment

Please consult TSUBAKI for more detailed information.

Application Example

BS Standard attachment chain is used for short conveyor runs (usually less than 10 metres) and for conveying small and reasonably lightweight products. This chain is also suitable for conditions where noise levels need to be kept to a minimum.

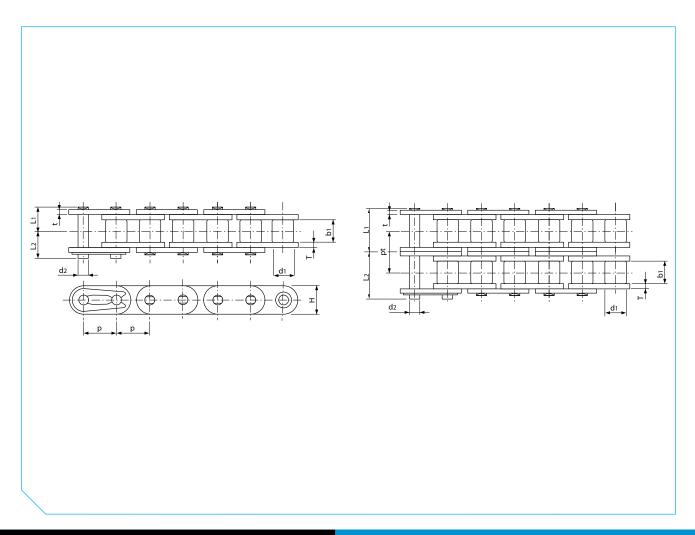

Standard Product Range

The product range for our standard attachment chains is:

- BS Single Pitch Standard chain + standard attachments
- BS Single Pitch RF chain with flat shaped link plates
- ANSI Single Pitch Standard chain + standard attachments
- ANSI Single Pitch HP Hollow Pin chain
- ANSI Single Pitch CU Curved chain
- ANSI Double Pitch Standard chain + standard attachments
- ANSI Double Pitch HP Hollow Pin chain

Special attachments can be designed and manufactured to meet your specific requirements.

BS Single Pitch Standard Chain


Dimensions in mm

					2										
							Р	in				Link Plate			
			Roller	Inner										Approx.	
TSUBAKI	Pit	tch	Diameter	Width	Diameter	Length	Length	Length	Length	Length	Thickness	Thickness	Height	Mass	
Chain No.		р	d1	b1	d2	Lı	L2	L3	L4	L	T	t	H (max.)	kg/m	
RF06B	9.525	(3/8")	6.35	5.72	3.27	6.10	7.70	10.90	16.30	15.10	1.30	1.00	8.20	0.39	
RS08B	12.70	(1/2")	8.51	7.75	4.45	8.40	10.00	14.70	22.20	18.60	1.60	1.60	11.80	0.70	
RS10B	15.875	(5/8")	10.16	9.65	5.08	9.55	11.25	17.80	26.15	20.80	1.50	1.50	14.70	0.95	
RS12B	19.05	(3/4")	12.07	11.68	5.72	11.10	13.00	20.80	30.60	24.40	1.80	1.80	16.10	1.25	
RS16B	25.40	(1")	15.88	17.02	8.28	17.75	19.95	33.20	49.35	41.10	4.00	3.20	21.00	2.70	
RS20B	31.75	(1 1/4")	19.05	19.56	10.19	19.90	23.10	38.40	56.90	46.60	4.40	3.40	26.00	3.85	

																		Atta	chment N	Лass	
							Atto	achment	Dimensi	ons							Α	K	WA	WK	Ext.
TSUBAKI																	SA	SK	WSA	WSK	Pin
Chain No.	U	C1 C2 C3 KW N NW O O1 S S1 X X1 X2 XS												XS	XS1	kg/att.	kg/att.	kg/att.	kg/att.	kg/att.	
RF06B	9.50	9.50	-	-	-	8.50	-	3.50	<u>-</u>	6.5	-	14.10	-	-	14.30	-	0.002	0.004	-	<u>-</u>	0.001
RS08B	11.90	PO 12.70 12.70 13.10 12.70 11.40 24.60 4.20 4.90 8.90 8.90 19.05 20.30 17.15												19.30	20.70	0.002	0.004	0.005	0.010	0.001	
RS10B	15.90	15.90	15.90	16.60	15.90	12.70	30.00	5.00	5.00	10.20	10.20	22.25	22.85	20.60	22.90	23.60	0.003	0.006	0.006	0.012	0.002
RS12B	19.05	22.20	17.45	17.60	19.10	16.50	34.80	7.10	5.50	13.50	11.40	29.85	25.65	27.80	32.05	25.75	0.006	0.012	0.009	0.018	0.003
RS16B	23.80	23.90	28.60	26.00	25.40	24.30	46.00	6.70	8.10	15.20	15.90	37.35	39.25	34.40	34.10	36.70	0.014	0.028	0.030	0.060	0.008
RS20B	31.75	31.80	-	-	-	25.40	-	8.70	-	19.80	-	44.85	-	-	44.00	-	0.027	0.054	-	-	0.014

Note:

1. RF06B chain has flat-shaped link plates.

BS Single Pitch RF Chain

Dimensions in mm

						Pin			Link Plate			
TSUBAKI	D	itch	Roller Diameter	Inner Width	Diameter	Length	Length	Thickness	Thickness	Height	Transverse Pitch	Approx. Mass
Chain No.		D	d1	b1	d2	Lengin L1	Lengin L2	T	†	H	pt	kg/m
RF08B-1 RF08B-2	12.70	(1/2")	8.51	7.75	4.45	8.40 15.30	10.00	1.60	1.60	12.00	13.92	0.75 1.40
RF10B-1 RF10B-2	15.875	(5/8")	10.16	9.65	5.08	9.55 17.85	11.25 19.55	1.50	1.50	14.70	- 16.59	1.00 1.90
RF12B-1 RF12B-2	19.05	(3/4")	12.07	11.68	5.72	11.10 20.85	13.00 22.75	1.80	1.80	16.10	- 19.46	1.30 2.60
RF16B-1 RF16B-2	25.40	(1")	15.88	17.02	8.28	17.75 33.55	19.95 35.75	4.00	3.20	24.00	31.88	2.80 5.60

- 1. Connecting links are clip type.
- 2. Intermediate plate of RF08B-2 chain is a solid plate.

Whether your operation requires a sanitary environment, is exposed to corrosive chemicals, is heated to extreme temperatures, runs through a freezer, is exposed to the outdoors or is affected by excessive moisture: our specially designed and tested chains will outlast your current chains and contribute to a cost effective application.

Corrosion Resistant Chain (Stainless Steel base)

BS PC Engineering Plastic Combination Chain

The pins, outer plates and attachments of these chains are made of SUS304 equivalent (spring clips SUS301). White Engineering Plastic is used for the inner link. This combination makes it lubefree, low noise (5 dB lower than BS standard roller chain) and lightweight (50% lighter than BS standard roller chain). The working temperature range is: -20°C to +80°C. For details on corrosion resistance, please refer to the table in the back of this catalogue.

BS SS Stainless Steel Chain

All basic components of this chain are made of SUS304 equivalent Stainless Steel (except the spring clips, which are made of SUS301). This chain can be used in special environments such as underwater, acidic and in alkaline applications. It can also be used in high and low temperatures (-20°C to +400°C). SUS304 equivalent is only marginally magnetic, which is a result of the cold-forging process. For details on corrosion resistance, please refer to the table in the back of this catalogue.

Corrosion Protected Chain (Carbon Steel base)

BS N.E.P. New Environmental Plating Chain

BS N.E.P. Chain is a TSUBAKI BS chain that has undergone a special surface treatment process.

The link plates, attachments, bushes and bearing pins have a special three stage layer applied in order to provide the maximum protection from the operating or environmental conditions. (Spring clips are SUS301).

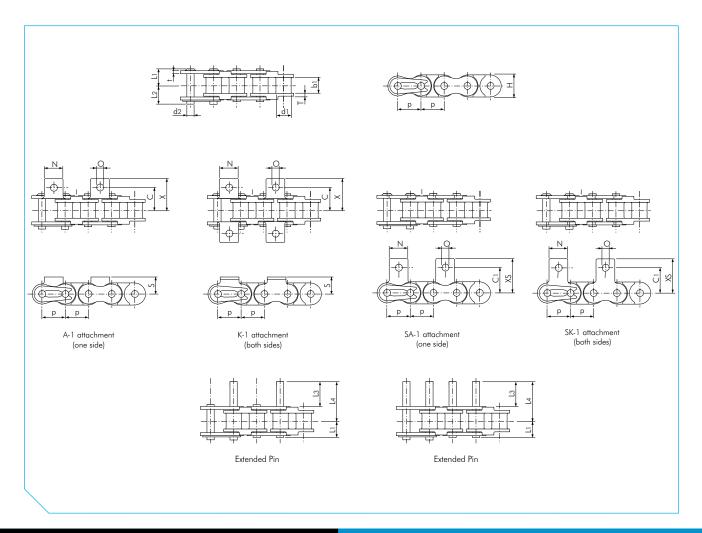
N.E.P. Rollers have a special coating designed to resist the corrosive conditions as well as the severe dynamic contact between roller and sprocket.

This chain is suitable for use in environments exposed to seawater, acid-rain and other adverse weather conditions. This chain does not contain any chemically hazardous substances

such as Hexavalent Chromium, Lead, Cadmium and Mercury as regulated by RoHS $^{\checkmark}$. It has a working temperature range of: -10 $^{\circ}$ C to +150 $^{\circ}$ C. Above +60 $^{\circ}$ C a special high-temperature lubrication is required.

Of course, BS LAMBDA N.E.P. chain is also available for this purpose.

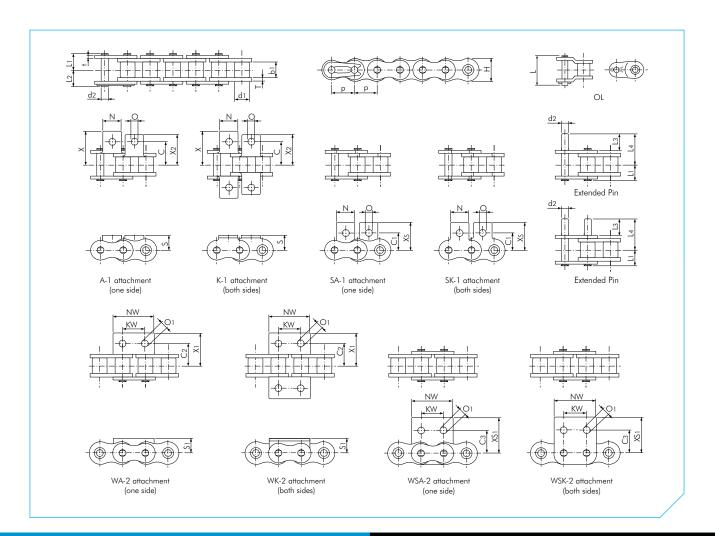
[√] RoHS = Restriction of Hazardous Substances


Standard Product Range

TSUBAKI has a wide variety of chains for corrosive environments; our standard product range is as follows:

- BS Single pitch PC chain + standard attachments
- BS Single pitch SS chain + standard attachments
- BS Single pitch N.E.P. chain + standard attachments
- ANSI Single pitch PC chain + standard attachments
- ANSI Single pitch P Plastic chain
- ANSI Single pitch SS chain + standard attachments
- ANSI Single pitch SS HP Hollow Pin chain
- ANSI Double Pitch SS chain + standard attachments
- ANSI Double Pitch SS HP Hollow Pin chain

Special attachments can be designed and manufactured to meet your specific requirements.

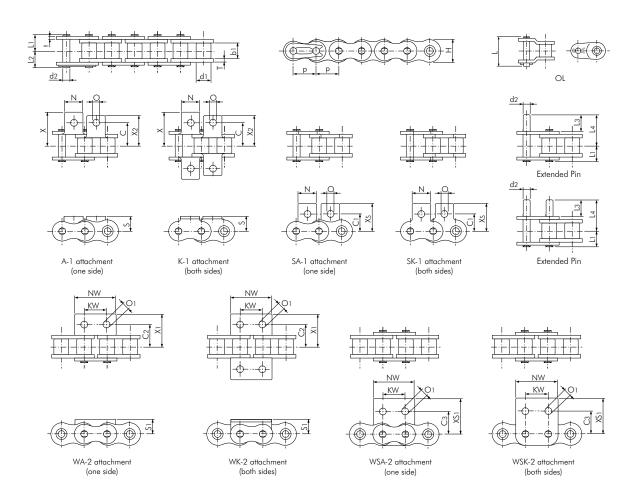

BS Single Pitch PC Chain

Dimensions in mm

							Pin				Link Plate			
													Max.	
													Allowable	
													Load	
			Bush	Inner									acc. to	Approx.
TSUBAKI	Pitch		Diameter	Width	Diameter	Length	Length	Length	Length	Thickness	Thickness	Height	Tsubaki	Mass
Chain No.	р		d1	b1	d2	Lı	L2	L3	L4	T	t	H (max.)	kN	kg/m
RF06B-PC	9.525	(3/8")	6.35	5.72	3.28	6.50	7.25	11.30	16.65	1.30	1.00	8.20	0.20	0.23
RS08B-PC	12.70	(1/2")	8.51	7.75	4.45	8.35	10.05	14.90	22.25	1.60	1.50	12.00	0.46	0.40
RS10B-PC	15.875	(5/8")	10.16	9.65	5.08	9.55	11.25	17.80	26.15	1.50	1.50	14.70	0.53	0.51
RS12B-PC	19.05	(3/4")	12.07	11.68	5.72	11.10	13.00	20.90	30.70	1.80	1.80	16.10	0.70	0.67

									Attachment Mass	
			Att	achment Dimensio	ons			А	K	Ext.
TSUBAKI								SA	SK	Pin
Chain No.	С	C1	Ν	0	XS	kg/att.	kg/att.	kg/att.		
RF06B-PC	9.50	9.50	8.50	3.50	14.30	0.002	0.004	0.001		
RS08B-PC	11.90	12.70	11.40	4.20	8.90	19.05	19.30	0.002	0.004	0.001
RS10B-PC	15.90	15.90	12.70	5.00	10.20	22.25	22.95	0.003	0.006	0.002
RS12B-PC	19.05	22.20	16.50	7.10	13.50	29.85	32.30	0.006	0.012	0.003
-										

- 1. Make sure to check the chain load again when replacing Stainless Steel Chain with PC Chain.
- 2. Offset links are not available.
- 3. Use a chain tensioner with an idler sprocket to adjust chain tension.
- 4. Guide rails should support the underside of the inner links.
- 5. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.


BS Single Pitch SS Chain

Dimensions in mm

							Р	in				Link Plate			
														Max.	
														Allowable	
														Load	
			Roller	Inner										acc. to	Approx.
TSUBAKI	Pitc	h	Diameter	Width	Diameter	Length	Length	Length	Length	Length	Thickness	Thickness	Height	Tsubaki	Mass
Chain No.	р		d1	b1	d2	Lı	L2	L3	L4	L	T	t	H (max.)	kN	kg/m
RF06B-SS	9.525	(3/8")	6.35	5.72	3.28	6.10	7.70	10.90	16.30	15.10	1.30	1.00	8.20	0.27	0.39
RSO8B-SS	12.70	(1/2")	8.51	7.75	4.45	8.35	10.05	14.70	22.20	20.05	1.50	1.50	12.00	0.48	0.70
RS10B-SS	15.875	(5/8")	10.16	9.65	5.08	9.55	11.25	17.80	26.15	22.90	1.50	1.50	14.70	0.66	0.95
RS12B-SS	19.05	(3/4")	12.07	11.68	5.72	11.10	13.00	20.90	30.70	26.70	1.80	1.80	16.10	0.87	1.25
RS16B-SS	25.40	(1")	15.88	17.02	8.28	17.75	19.95	33.20	49.35	43.70	4.00	3.20	21.00	2.10	2.70

																		Atta	chment N	∕lass	
							Atto	achment	Dimensi	ons							Α	K	WA	WK	Ext.
TSUBAKI																	SA	SK	WSA	WSK	Pin
Chain No.	С	C1 C2 C3 KW N NW O O1 S S1 X X1 X2 XS												XS1	kg/att.	kg/att.	kg/att.	kg/att.	kg/att.		
RF06B-SS	9.50	9.50	-	-	-	8.50	-	3.50		6.50	-	14.10	-	-	14.30	-	0.002	0.004	-	-	0.001
RS08B-SS	11.90	.90 12.70 12.70 13.10 12.70 11.40 24.60 4.20 4.90 8.90 8.90 19.05 20.30 17.15 19												19.30	20.70	0.002	0.004	0.005	0.010	0.001	
RS10B-SS	15.90	15.90	15.90	16.60	15.90	12.70	30.00	5.00	5.00	10.20	10.20	22.25	22.85	20.60	22.90	23.60	0.003	0.006	0.006	0.012	0.002
RS12B-SS	19.05	22.20	17.45	17.60	19.10	16.50	34.80	7.10	5.50	13.50	11.40	29.85	25.65	27.80	32.05	25.75	0.006	0.012	0.009	0.018	0.003
RS16B-SS	23.80	23.90		26.00	25.40	24.30	46.00	6.70	8.10	15.20	15.90	37.35	39.25		34.10	36.70	0.014	0.028	0.030	0.060	0.008

- 1. RF06B-SS chain has flat-shaped link plates.
- 2. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

BS Single Pitch N.E.P. Chain

Dimensions in mm

					Pin Link Plate										
			Roller	Inner										Approx.	
TSUBAKI	Pitc	h	Diameter	Width	Diameter	Length	Length	Length	Length	Length	Thickness	Thickness	Height	Mass	
Chain No.	р		d1	b1	d2	Lı	L2	L3	L4	L	T	t	H (max.)	kg/m	
RF06B-NEP	9.525	(3/8")	6.35	5.72	3.27	6.10	7.70	10.90	16.30	15.10	1.30	1.00	8.20	0.39	
RS08B-NEP	12.70	(1/2")	8.51	7.75	4.45	8.40	10.00	14.70	22.20	18.60	1.60	1.60	11.80	0.70	
RS10B-NEP	15.875	(5/8")	10.16	9.65	5.08	9.55	11.25	17.80	26.15	20.80	1.50	1.50	14.70	0.95	
RS12B-NEP	19.05	(3/4")	12.07	11.68	5.72	11.10	13.00	20.80	30.60	24.40	1.80	1.80	16.10	1.25	
RS16B-NEP	25.40	(1")	15.88	17.02	8.28	17.75	19.95	33.20	49.35	41.10	4.00	3.20	21.00	2.70	
RS20B-NEP	31.75	(1 1/4")	19.05	19.56	10.19	19.90	23.10	38.40	56.90	46.60	4.40	3.40	26.00	3.85	

																		Atta	chment A	Λass	
							Atte	achment	Dimensi	ons							Α	K	WA	WK	Ext.
TSUBAKI																	SA	SK	WSA	WSK	Pin
Chain No.	С													XS	XS1	kg/att.	kg/att.	kg/att.	kg/att.	kg/att.	
RF06B-NEP	9.50	9.50	-	-	-	8.50	-	3.50	-	6.50	-	14.10	-	-	14.30	-	0.002	0.004	-	- 1	0.001
RS08B-NEP	11.90	0 12.70 12.70 13.10 12.70 11.40 24.60 4.20 4.90 8.90 8.90 19.05 20.30 17.15 19.												19.30	20.70	0.002	0.004	0.005	0.010	0.001	
RS10B-NEP	15.90	15.90	15.90	16.60	15.90	12.70	30.00	5.00	5.00	10.20	10.20	22.25	22.85	20.60	22.90	23.60	0.003	0.006	0.006	0.012	0.002
RS12B-NEP	19.05	22.20	17.45	17.60	19.10	16.50	34.80	7.10	5.50	13.50	11.40	29.85	25.65	27.80	32.05	25.75	0.006	0.012	0.009	0.018	0.003
RS16B-NEP	23.80	23.90	28.60	26.00	25.40	24.30	46.00	6.70	8.10	15.20	15.90	37.35	39.25	34.40	34.10	36.70	0.014	0.028	0.030	0.060	0.008
RS20B-NEP	31.75	31.80	-	-	-	25.40	-	8.70	-	19.80	-	44.85	-	-	44.00		0.027	0.054			0.014

Note

- 1. RF06B-NEP chain has flat shaped link plates.
- 2. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

Technical Evolution

As a pioneer in the lube-free chain market, TSUBAKI will reveal some of the key elements behind ANSI LAMBDA's outstanding performance:

Sintered Bush

A special oil-impregnated sintered bush in combination with a special coated pin for long-term internal lubrication is the secret of TSUBAKI ANSI LAMBDA's long economic life and wear resistance.

Temperature and Lubrication

TSUBAKI ANSI LAMBDA has outstanding performance in temperatures up to +150 °C.

For temperatures above $+150^{\circ}\text{C}$: Due to the special NSF-H1 certified lubrication impregnated bushes, TSUBAKI ANSI LAMBDA KF Series is usable in a wide temperature range (from -10°C to $+230^{\circ}\text{C}$), and for food product applications while at the same time being kind to the environment.

Please consult TSUBAKI for more detailed information.

Special Oil Impregnated Sintered Bush Roller Ring Coin

Save Maintenance Costs

No expensive labour costs as it is not required to manually lubricate this chain.

Save Purchasing Costs

Lower frequency of purchasing due to the high quality of the chain and its long economic life. No purchasing of lubricants or lubrication systems necessary.

Higher Productivity

No unforeseen downtime due to chain breakage.

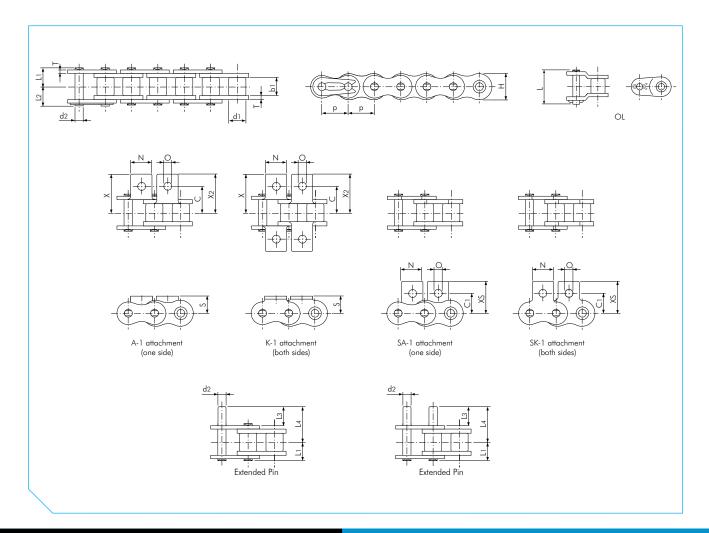
Less time required for maintenance and therefore more time for production.

Environmental Friendly

Applications run clean thus reducing the risk of contaminating products, machines, floor etc.

Inter-Changeability

ANSI LAMBDA Attachment chain is interchangeable with standard ANSI roller chains. However, as the pins are longer than those of the standard ANSI roller chain, please make sure that there is no interference with the machine.

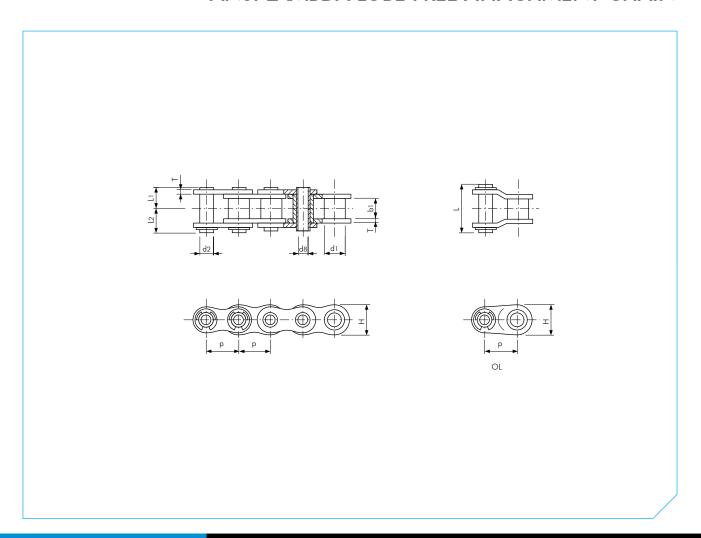

Standard Product Range

The product range for our standard LAMBDA attachment chains is:

- ANSI Single Pitch LAMBDA chain + standard attachments
- ANSI Single Pitch LAMBDA HP Hollow Pin chain
- ANSI Double Pitch LAMBDA chain
- BS Single Pitch LAMBDA chain + standard attachments
- BS Single Pitch LAMBDA RF chain with flat shaped link plates

Special attachments can be designed and manufactured to meet your specific requirements.

ANSI Single Pitch LAMBDA Chain

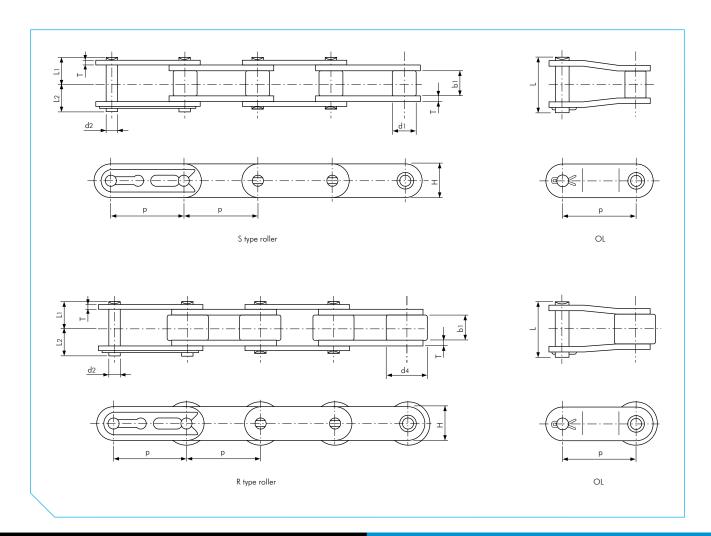

Dimensions in mm

							Pi	in			Link	Plate	
			Roller	Inner									Approx.
TSUBAKI	Pi	itch	Diameter	Width	Diameter	Length	Length	Length	Length	Length	Thickness	Height	Mass
Chain No.		р	d1	b1	d2	Lı	L2	L3	L4	L	T	H (max.)	kg/m
RS40-LMC	12.70	(1/2")	7.92	7.95	3.97	8.25	9.95	9.50	16.75	18.20	1.50	12.00	0.64
RS50-LMC	15.875	(5/8")	10.16	9.53	5.09	10.30	12.00	11.90	21.00	22.60	2.00	15.00	1.04
RS60-LMC	19.05	(3/4")	11.91	12.70	5.96	12.85	14.75	14.30	25.75	28.20	2.40	18.10	1.53
RS80-LMC	25.40	(1")	15.88	15.88	7.94	16.25	19.25	19.10	33.85	36.60	3.20	24.10	2.66

										Attachment Mas	5
				Attachment	Dimensions				А	K	Ext.
TSUBAKI									SA	SK	Pin
Chain No.	С	C1	N	0	XS	kg/att.	kg/att.	kg/att.			
RS40-LMC	12.70	12.70	9.50	3.60	17.40	0.002	0.004	0.001			
RS50-LMC	15.90	15.90	12.70	5.20	10.30	23.40	23.40	23.05	0.003	0.006	0.002
RS60-LMC	19.05	18.30	15.90	5.20	11.90	28.20	28.20	26.85	0.007	0.014	0.003
RS80-LMC	25.40	24.60	19.10	6.80	15.90	36.60	36.60	35.45	0.013	0.026	0.007

Note

- 1. Connecting links are clip type for sizes up to RS60-LMC, and cotter type for size RS80-LMC.
- 2. Drive and Conveyor series LAMBDA chains cannot be intercoupled or interchanged.
- 3. Standard ANSI sprockets can be used.
- 4. LAMBDA Conveyor Chain cannot be used as a drive chain. This chain is designed for conveyor applications where speeds are lower and center distances are larger than drive chain applications.
- 5. Special attachments are available on request.


ANSI Single Pitch LAMBDA Hollow Pin (HP) Chain

Dimensions in mm

											Dimen	sions in mm
							Pin			Link	Plate	
TSUBAKI	Pitch	1	Bush Diameter	Inner Width	Diameter	Hollow Pin	Length	Length	Length	Thickness	Height	Approx. Mass
Chain No.	р		d1	b1	d2	d8	L1	L2	I	T	H (max.)	kg/m
RS40-LMC-HP	12.70	(1/2")	7.92	7.95	5.68	4.00	8.00	9.50	19.10	1.50	12.00	0.53
RS50-LMC-HP	15.875	(5/8")	10.16	9.53	7.22	5.12	10.05	11.65	23.40	2.00	15.00	0.86
RS60-LMC-HP	19.05	(3/4")	11.91	12.70	8.38	5.99	12.55	14.25	28.70	2.40	18.10	1.27

Note:

1. ANSI LMC-HP chain is rollerless chain (only bush).

ANSI Double Pitch LAMBDA Chain

Dimensions in mm

				Dii										
				Ro	ller		Pi	in		Link	Plate	Approx	c. Mass	
			1											
TSUBAKI	Pi	itch	Inner Width	S Roller	R Roller	Diameter	Length	Length	Length	Thickness	Height	S Roller	R Roller	
Chain No.		р	b1	d1	d4	d2	Li	L2	L	T	H	kg/m	kg/m	
RF2040-LMC	25.40	(1")	7.95	7.92	15.88	3.97	8.25	9.95	18.20	1.50	12.00	0.51	0.87	
RF2050-LMC	31.75	(1 1/4")	9.53	10.16	19.05	5.09	10.30	12.00	22.60	2.00	15.00	0.84	1.30	
RF2060-LMC	38.10	(1 1/2")	12.70	11.91	22.23	5.96	14.55	16.55	31.50	3.20	17.20	1.51	2.19	

- 1. Connecting links are clip type.
- 2. LAMBDA Conveyor Chain cannot be used as a drive chain. This chain is designed for conveyor applications where speeds are lower and center distances are larger than drive chain applications.
- 3. Special attachments are available on request.
- 4. Chain with S type roller is indicated as RF2040S-LMC.
- 5. Chain with R type roller is indicated as RF2040R-LMC.

Fig. 24 K-1 Attachment

Construction

This chain is based on standard ANSI roller chain with attachments added for conveying.

Key Features

- Due to the small pitch of these chains, the drive design is smaller.
- Usually sprockets with a large number of teeth are used. The
 chain speed does not vary significantly as the chain engages
 with sprockets. With less impact, there is also less noise
 generated as a result of the impact between the roller and
 sprocket tooth.
- These chains may be used for high-speed conveyors.
- A wide variety of standard attachments and special attachments is available for this chain series.

Customised Pre-Lubrication Service

Proper lubrication is the key to extend the life and improve the performance of a chain. In order to get the best performance in general applications (- 10° C to $+60^{\circ}$ C), all ANSI drive chains are pre-lubricated. ANSI attachment chains however are NOT prelubricated, but have been treated with rust preventive oil and therefore need to be lubricated before the installation of the chain. The reason for TSUBAKI not to lubricate the ANSI attachment chains is due to the fact that attachment chains often have to function in various environments where standard lubrication cannot be used.

For special applications, TSUBAKI can provide attachment chains, pre-lubricated with a special lubricant at the customer's request.

- High temperature
- Low temperature
- Food safe
- Outdoor exposure
- · Dusty environment

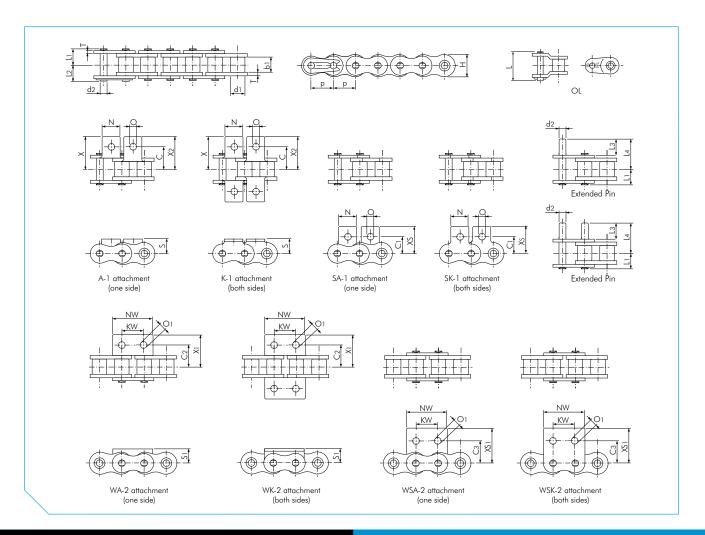
Please consult TSUBAKI for more detailed information.

Application Example

ANSI Standard attachment chain is used for short conveyors of usually less than 10 metres for small and light products. This chain is also suitable for conditions under which noise should be avoided.

Standard Product Range

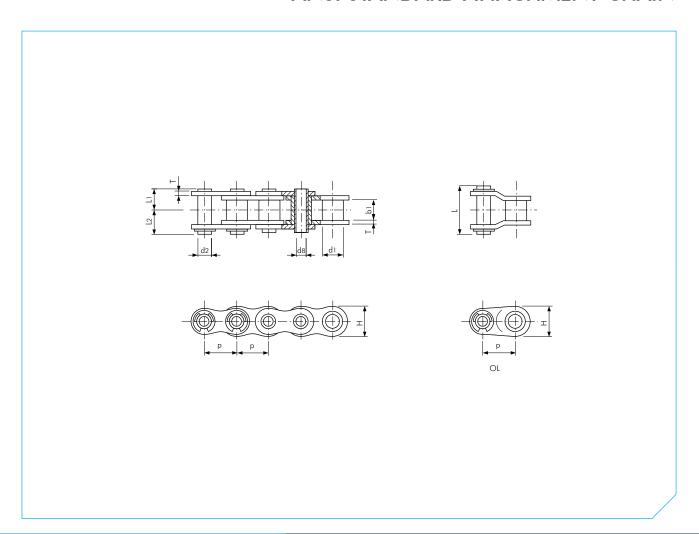
The product range for our standard attachment chains is:


- ANSI Single Pitch Standard chain + standard attachments
- ANSI Single Pitch HP Hollow Pin chain
- ANSI Single Pitch CU Curved chain
- ANSI Double Pitch Standard chain + standard attachments
- ANSI Double Pitch HP Hollow Pin chain
- BS Single Pitch Standard chain + standard attachments
- BS Single Pitch RF chain with flat shaped link plates

Special attachments can be designed and manufactured to meet your specific requirements.

Fig. 25 Double Pitch A-2 Attachment

ANSI Single Pitch Standard Chain

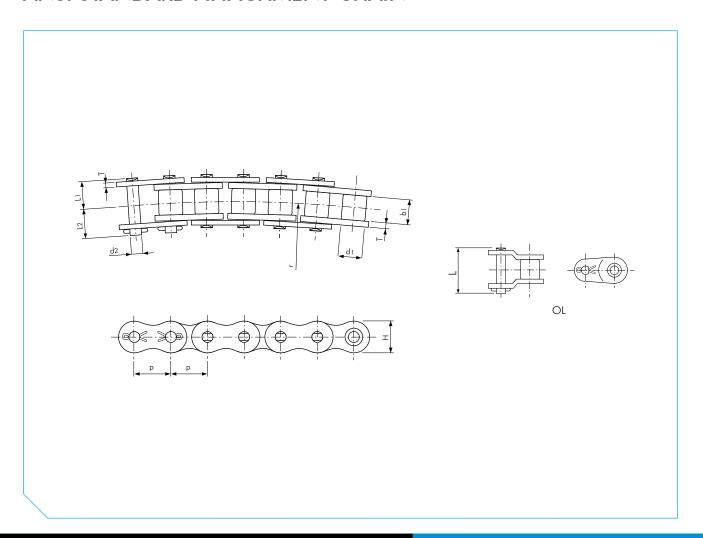

Dimensions in mm

							Р	in			Link		
			Roller	Inner									Approx.
TSUBAKI	Pitch [Diameter	Width	Diameter	Length	Length	Length	Length	Length	Thickness	Height	Mass
Chain No.	р)	d1	b1	d2	Lı	L2	L3	L4	L	T	H (max.)	kg/m
RS35	9.525	(3/8")	5.08	4.78	3.59	5.85	6.85	9.50	14.60	13.50	1.25	9.00	0.33
RS40	12.70	(1/2")	7.92	7.95	3.97	8.25	9.95	9.50	16.75	18.20	1.50	12.00	0.64
RS50	15.875	(5/8")	10.16	9.53	5.09	10.30	12.00	12.00	21.00	22.60	2.00	15.00	1.04
RS60	19.05	(3/4")	11.91	12.70	5.96	12.85	14.75	14.30	25.75	28.20	2.40	18.10	1.53
RS80	25.40	(1")	15.88	15.88	7.94	16.25	19.25	19.10	33.85	36.60	3.20	24.10	2.66

																Attachment Mass					
		Attachment Dimensions													Α	К	WA	WK	Ext.		
TSUBAKI														SA	SK	WSA	WSK	Pin			
Chain No.	С	C1	C2	Сз	KW	Z	NW	0	01	S	S1	Х	X1	X2	XS	XS1	kg/att.	kg/att.	kg/att.	kg/att.	kg/att.
RS35	9.50	9.50	9.50	9.50	9.50	7.90	17.30	3.40	2.60	6.35	6.35	14.30	14.30	14.30	14.55	14.55	0.0008	0.0016	0.001	0.002	0.001
RS40	12.70	12.70	12.70	12.70	9.50	9.50	23.00	3.60	4.50	8.00	8.00	17.80	17.80	17.80	17.40	17.40	0.002	0.004	0.003	0.006	0.001
RS50	15.90	15.90	15.90	15.90	11.90	12.70	28.80	5.20	5.50	10.30	10.30	23.40	23.40	23.40	23.05	23.05	0.003	0.006	0.007	0.014	0.002
RS60	19.05	18.30	19.05	18.30	14.30	15.90	34.60	5.20	6.60	11.90	11.90	28.20	28.20	28.20	26.85	26.85	0.007		0.012	0.024	0.003
RS80	25.40	24.60	25.40	24.60	19.10	19.10	46.10	6.80	9.00	15.90	15.90	36.60	36.60		35.45	35.45		0.026	0.028	0.056	0.007

Note

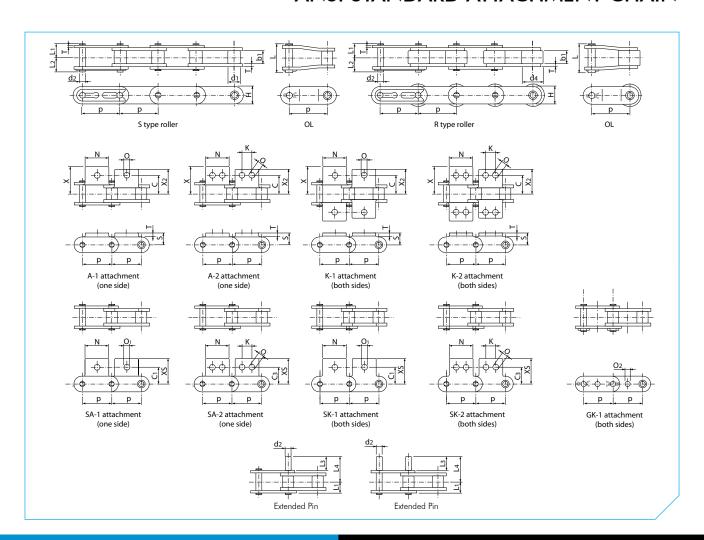
- $1. \ RS35 \ is \ rollerless \ chain \ (only \ bush). \ The \ figure \ shown \ is \ the \ bush \ diameter.$
- 2. Connecting links are clip type for sizes up to RS60, and cotter type for size RS80.


ANSI Single Pitch Hollow Pin (HP) Chain

Dimensions in mm

											Dimen	sions in mm
							Pin			Link	Plate	
T011D 41/4	D		Bush	Inner	6:	III II D				Tivi		Approx.
TSUBAKI		tch	Diameter	Width	Diameter	Hollow Pin	Length	Length	Length	Thickness	Height	Mass
Chain No.		p (2.40#)	d1	b1	d2	d8	L1	L2	L	1.50	H (max.)	kg/m
RS40-HP	12.70	(1/2")	7.92	7.95	5.68	4.00	8.00	9.50	19.10	1.50	12.00	0.53
RS50-HP	15.875	(5/8")	10.16	9.53	7.22	5.12	10.05	11.65	23.40	2.00	15.00	0.86
RS60-HP	19.05	(3/4")	11.91	12.70	8.38	5.99	12.55	14.25	28.70	2.40	18.10	1.27
RS80-HP	25.40	(1")	15.88	15.88	11.38	8.02	16.25	17.80	35.70	3.20	24.10	2.15

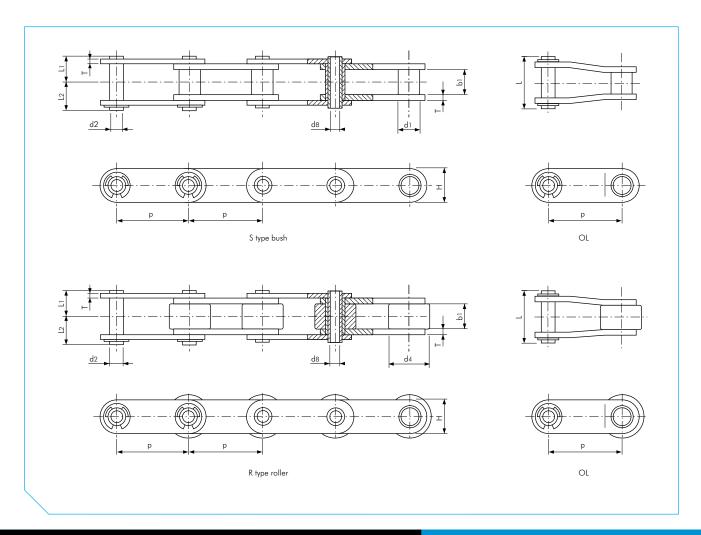
Note:


1. ANSI HP chain is rollerless chain (only bush).

ANSI Single Pitch Curved (CU) Chain

Dimensions in mm

						Pin		Link	Plate		
										Minimum	
			Roller	Inner						Bending	Approx.
TSUBAKI	Pitch	า	Diameter	Width	Diameter	Length	Length	Thickness	Height	Radius	Mass
Chain No.	р		d1	b1	d2	Li	L2	Т	H (max.)	r	kg/m
RS40-CU	12.70	(1/2")	7.92	7.95	3.97	8.45	9.75	1.50	12.00	350	0.61
	L										
RS50-CU	15.875		10.16	9.53	5.09	10.60	12.40	2.00	15.00	400	1.01
RS60-CU	19.05	(3/4")	11.91	12.70	5.96	13.25	15.05	2.40	18.10	500	1.40
RS80-CU	25.40	(1")	15.88	15.88	7.94	16.75	20.05	3.20	24.10	600	2.47


ANSI Double Pitch Standard Chain

Dimensions in mm

				Ro	ller			Р	in			Link Plate		Approx	c. Mass
			Inner												
TSUBAKI	Pitch		Width	S Roller	R Roller	Diameter	Length	Length	Length	Length	Length	Thickness	Height	S Roller	R Roller
Chain No.		р	b1	d1	d4	d2	Lı	L2	L3	L4	L	T	Н	kg/m	kg/m
RF2040	25.40	(1")	7.95	7.92	15.88	3.97	8.25	9.95	9.50	16.75	18.20	1.50	12.00	0.51	0.87
RF2050	31.75	(1 1/4")	9.53	10.16	19.05	5.09	10.30	12.00	11.90	21.00	22.60	2.00	15.00	0.84	1.30
RF2060	38.10	(1 1/2")	12.70	11.91	22.23	5.96	14.55	16.55	14.30	27.45	31.50	3.20	17.20	1.51	2.19
RF2080	50.80	(2")	15.88	15.88	28.58	7.94	18.30	20.90	19.10	35.50	39.90	4.00	23.00	2.41	3.52
RF2100	63.50	(2 1/2")	19.05	19.05	39.69	9.54	21.80	24.50	23.80	43.40	47.50	4.80	28.60	3.54	5.80

															Attachment Mass			
		Attachment Dimensions													Ext.			
TSUBAKI															Pin			
Chain No.	C C1 C3 K N O O1 O2 S X X2 XS											kg/att.	kg/att.	kg/att.				
RF2040	12.70 11.10 13.60 9.50 19.10 3.60 5.20 4.10 9.10 19.30 17.60 19.80												0.003	0.006	0.001			
RF2050	15.90	14.30	15.90	11.90	23.80	5.20	6.80	5.10	11.10	24.20	22.00	24.60	0.006	0.012	0.002			
RF2060	21.45	17.50	19.10	14.30	28.60	5.20	8.70	6.10	14.70	31.50	28.20	30.60	0.017	0.034	0.003			
RF2080	27.80	22.20	25.40	19.10	38.10	6.80	10.30	8.10	19.10	40.70	36.60	40.50	0.032	0.064	0.007			
RF2100	33.35 28.60 31.80 23.80 47.60 8.70 14.30 10.10 23.40 49.90 44.90 50.40												0.060	0.120	0.012			

- 1. Connecting links are clip type for sizes up to RF2060, and cotter type for size RF2080 to RF2100; All GK-1 attachments are cotter type.
- 2. R-Roller is not available with GK-1 attachment.
- 3. Special attachments are available on request.
- 4. Chain with S type roller is indicated as RF2040S.
- 5. Chain with R type roller is indicated as RF2040R.

ANSI Double Pitch Hollow Pin (HP) Chain

Dimensions in mm

								Pin			Link	Plate	Approx	. Mass		
			Inner													
TSUBAKI	Pi	tch	Width	S Bush d1	R Roller		Hollow Pin	Length	Length	Length	Thickness	Height	S Bush	R Roller		
Chain No.	р						d4	d2	d8	L1	L2	L	T	Н	kg/m	kg/m
RF2040-HP	25.40	(1")	7.95	7.92	15.88	5.68	4.00	8.00	9.50	19.10	1.50	12.00	0.46	0.82		
RF2050-HP	31.75	(1 1/4")	9.53	10.16	19.05	7.22	5.12	10.05	11.65	23.40	2.00	15.00	0.75	1.21		
RF2060-HP	38.10	(1 1/2")	12.70	11.91	22.23	8.38	5.99	12.55	14.25	28.70	2.40	17.20	1.38	2.06		
RF2080-HP	50.80	(2")	15.88	15.88	28.58	11.38	8.02	16.25	17.80	35.70	3.20	23.00	1.80	2.81		
		. ,														

- 1. Chain with S type bush is indicated as RF2040S-HP.
- 2. Chain with R type roller is indicated as RF2040R-HP.

Whether your operation requires a sanitary environment, is exposed to corrosive chemicals, is heated to extreme temperatures, runs through a freezer, is exposed to the outdoors or is affected by excessive moisture: our specially designed and tested chains will outlast your current chains and contribute to a cost effective application.

Corrosion Resistant Chain (Engineering Plastic base)

ANSI P Plastic Chain

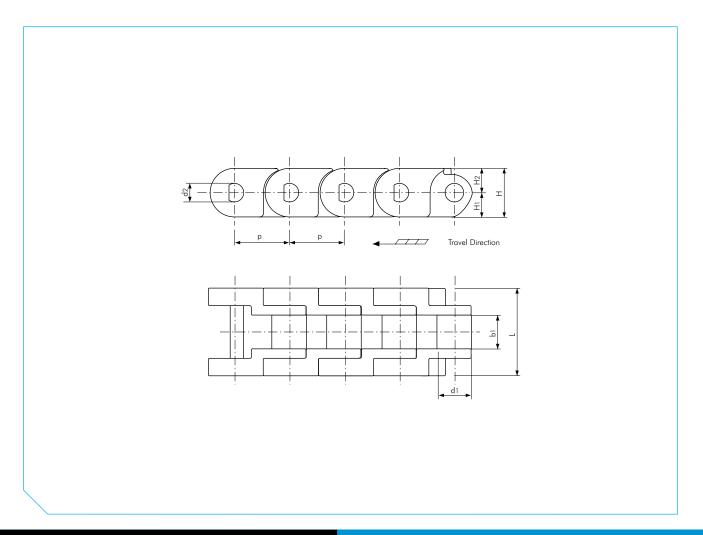
ANSI P Chain consists of polyacetal chain links and SUS304 equivalent stainless steel pins and operates with standard roller chain sprockets. Based on power transmission roller chain, TSUBAKI ANSI P chain has a flat top side for conveying use. The combination of engineering plastic and stainless steel makes it a lube-free operation chain. For special environments special plastics are available on request (electro-conductive, chemical resistant and heat resistant series). The working temperature range is: -20°C to +80°C. For details on corrosion resistance, please refer to the table in the back of this catalogue.

Corrosion Resistant Chain (Stainless Steel base)

ANSI PC Engineering Plastic Combination Chain

The pins, outer plates and attachments of these chains are made of SUS304 equivalent (spring clips SUS301). White Engineering Plastic is used for the inner link. This combination makes it lubefree, low noise (5 dB lower than ANSI standard roller chain) and lightweight (50% lighter than ANSI standard roller chain). The working temperature range is: -20°C to +80°C. For details on corrosion resistance, please refer to the table in the back of this catalogue.

ANSI SS Stainless Steel Chain

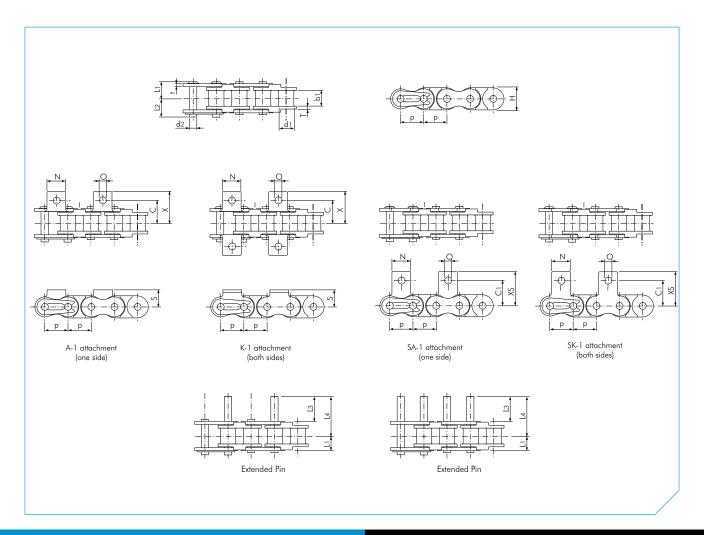

All basic components of this chain are made of SUS304 equivalent Stainless Steel (except the spring clips, which are made of SUS301). This chain can be used in special environments such as underwater, acidic and alkaline applications. It can also be used in high and low temperatures (-20°C to +400°C). SUS304 equivalent is only marginally magnetic, which is a result of the cold-forging process. For details on corrosion resistance, please refer to the table in the back of this catalogue.

Standard Product Range

TSUBAKI has a wide variety of chains for corrosive environments; our standard product range is as follows:

- ANSI Single pitch PC chain + standard attachments
- ANSI Single pitch P Plastic chain
- ANSI Single pitch SS chain + standard attachments
- ANSI Single pitch SS HP Hollow Pin chain
- ANSI Double Pitch SS chain + standard attachments
- ANSI Double Pitch SS HP Hollow Pin chain
- BS Single pitch PC chain + standard attachments
- BS Single pitch SS chain + standard attachments
- BS Single pitch N.E.P. chain + standard attachments

Special attachments can be designed and manufactured to meet your specific requirements.

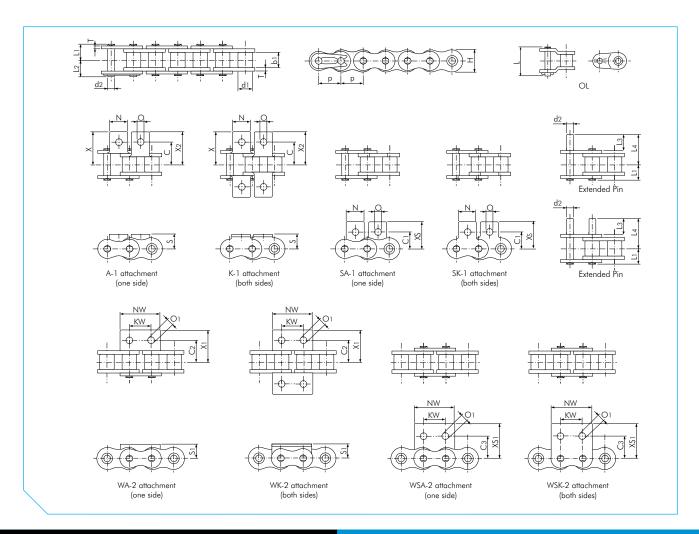


ANSI Single Pitch P Chain

Dimensions in mm

					Р	in		Chain Height		
TSUBAKI Chain No.		itch	Bush Diameter d1	Inner Width b1	Diameter d2	Length L	Height H	Height H1	Height H2	Approx. Mass kg/m
	12.70	(1/2")	7.92	7.95	4.00	20.00	12.70	6.00	6.70	0.36
RSP-40 RSP-60	19.05	(3/4")	11.91	12.70	6.00	30.00	17.30	8.50	8.80	0.72

- 1. Standard ANSI sprockets can be used.
- 2. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.


ANSI Single Pitch PC Chain

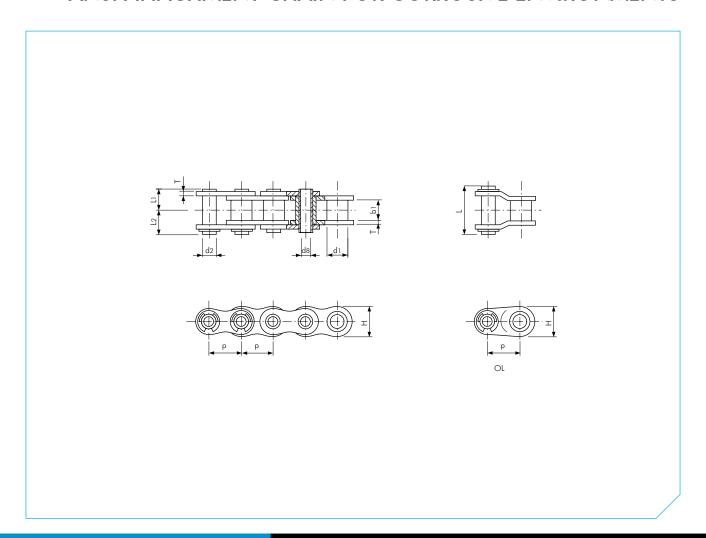
Dimensions in mm

							Pin				Link Plate			
													Max.	
													Alowable.	
													Load	
			Bush	Inner									acc. to	Approx.
TSUBAKI	Pite	ch	Diameter	Width	Diameter	Length	Length	Length	Length	Thickness	Thickness	Height	Tsubaki	Mass
Chain No.	p)	d1	b1	d2	Lı	L2	L3	L4	T	t	H (max.)	kN	kg/m
RS25-PC	6.35	(1/4")	3.30	3.18	2.31	4.50	5.50	-	-	1.30	0.75	6.00	0.08	0.095
RS35-PC	9.525	(3/8")	5.08	4.78	3.59	6.85	7.85	-	-	2.20	1.25	9.00	0.18	0.22
RS40-PC	12.70	(1/2")	7.92	7.95	3.97	8.25	9.95	9.40	16.75	1.50	1.50	12.00	0.44	0.39
RS50-PC	15.875	(5/8")	10.16	9.53	5.09	10.30	12.00	11.90	21.00	2.00	2.00	15.00	0.69	0.58
RS60-PC	19.05	(3/4")	11.91	12.70	5.96	12.85	14.75	14.20	25.75	2.40	2.40	18.10	0.88	0.82

									Attachment Mass	
			Att	achment Dimensio	ons			А	K	Ext.
TSUBAKI								SA	SK	Pin
Chain No.	С	C1	Ν	0	S	X	XS	kg/att.	kg/att.	kg/att.
RS25-PC	7.95	7.95	5.60	3.40	4.75	11.45	11.65	0.0006	0.0012	-
RS35-PC	10.50	9.50	7.90	3.40	6.35	15.35	14.55	0.0008	0.0016	-
RS40-PC	12.75	12.70	9.50	3.60	8.00	17.80	17.40	0.002	0.004	0.001
RS50-PC	16.00	15.90	12.70	5.20	10.30	23.55	23.05	0.003	0.006	0.002
RS60-PC	19.15	18.30	15.90	5.20	11.90	28.35	26.85	0.007	0.014	0.003

- 1. Make sure to check the chain load again when replacing Stainless Steel Chain with PC Chain.
- 2. Offset links are not available.
- 3. Use a chain tensioner with an idler sprocket to adjust chain tension.
- 4. Guide rails should support the underside of the inner links
- 5. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

ANSI Single Pitch SS Chain

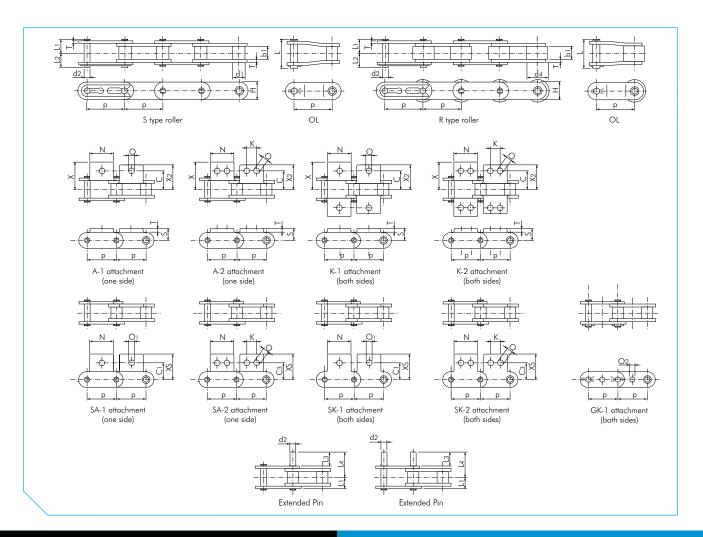

Dimensions in mm

												D	.0.15 111 111111
							Р	in			Link	Plate	
			Roller	Inner									Approx.
TSUBAKI	Pitc	:h	Diameter	Width	Diameter	Length	Length	Length	Length	Length	Thickness	Height	Mass
Chain No.	р		d1	b1	d2	Lı	L2	L3	L4	L	T	H (max.)	kg/m
RS40-SS	12.70	(1/2")	7.92	7.95	3.97	8.25	9.95	9.50	16.75	18.20	1.50	12.00	0.64
RS50-SS	15.875	(5/8")	10.16	9.53	5.09	10.30	12.00	11.90	21.00	22.60	2.00	15.00	1.04
RS60-SS	19.05	(3/4")	11.91	12.70	5.96	12.85	14.75	14.30	25.75	28.20	2.40	18.10	1.53

																		Atta	chment N	Nass	
							Atto	achment	Dimensi	ons							А	K	WA	WK	Ext.
TSUBAKI																	SA	SK	WSA	WSK	Pin
Chain No.	С	C1	C2	C3	KW	Ν	NW	0	O1	S	S1	X	X1	X2	XS	XS1	kg/att.	kg/att.	kg/att.	kg/att.	kg/att.
RS40-SS	12.70	12.70	12.70	12.70	9.50	9.50	23.00	3.60	4.50	8.00	8.00	17.80	17.80	17.80	17.40	17.40	0.002	0.004	0.003	0.006	0.001
RS50-SS	15.90	15.90	15.90	15.90	11.90	12.70	28.80	5.20	5.50	10.30	10.30	23.40	23.40	23.40	23.05	23.05	0.003	0.006	0.007	0.014	0.002
RS60-SS	19.05	18.30	19.05	18.30	14.30				6.60	11.90		28.20		28.20					0.012	0.024	0.003

Note

- 1. Connecting links are clip type.
- 2. For details on corrosion resistance selection, please consult our Corrosion Resistance Guide in this catalogue.

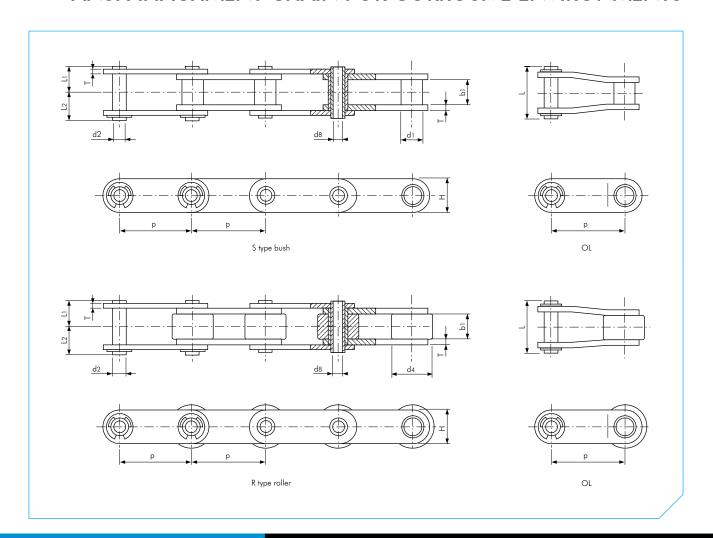

ANSI Single Pitch SS Hollow Pin (HP) Chain

Dimensions in mm

											Dimen	sions in mm
							Pin			Link	Plate	
			Bush	Inner								Арргох.
TSUBAKI	Pit	ch	Diameter	Width	Diameter	Hollow Pin	Length	Length	Length	Thickness	Height	Mass
Chain No.	F	0	d1	b1	d2	d8	Lı	L2	L	T	H (max.)	kg/m
RS40-HP-SS	12.70	(1/2")	7.92	7.95	5.68	4.00	8.00	9.50	19.10	1.50	12.00	0.53
RS50-HP-SS	15.875	(5/8")	10.16	9.53	7.22	5.12	10.05	11.65	23.40	2.00	15.00	0.86
RS60-HP-SS	19.05	(3/4")	11.91	12.70	8.38	5.99	12.55	14.25	28.70	2.40	18.10	1.27
RS80-HP-SS	25.40	(1")	15.88	15.88	11.38	8.02	16.25	17.80	35.70	3.20	24.10	2.15

Note:

1. ANSI HP-SS chain is rollerless chain (only bush).


ANSI Double Pitch SS Chain

Dimensions in mm

				Rol	ller			Р	in			Link l	Plate		Approx	. Mass
														Max.		
														Allowable		
														Load		
		- I	Inner											acc. to		
TSUBAKI	Pitch	V	Width	S Roller	R Roller	Diameter	Length	Length	Length	Length	Length	Thickness	Height	Tsubaki	S Roller	R Roller
Chain No.	р		b1	d1	d4	d2	L1	L2	L3	L4	L	Т	Н	kN	kg/m	kg/m
RF2040-SS	25.40	(1")	7.95	7.92	15.88	3.97	8.25	9.95	9.50	16.75	18.60	1.50	12.00	0.44	0.51	0.87
RF2050-SS	31.75 (1	1/4")	9.53	10.16	19.05	5.09	10.30	12.00	11.90	21.00	23.90	2.00	15.00	0.69	0.84	1.30
RF2060-SS	38.10 (1	1/2") 12	2.70	11.91	22.23	5.96	14.55	16.55	14.30	27.45	32.80	3.20	17.20	1.03	1.51	2.19
RF2080-SS	50.80	(2") 1:	5.88	15.88	28.58	7.94	18.30	20.90	19.10	35.50	42.10	4.00	23.00	1.76	2.41	3.52

													Att	tachment Mo	ass
						Attachment	Dimensions						А	K	Ext.
TSUBAKI													SA	SK	Pin
Chain No.	С	C1	C3	K	Z	0	01	O2	S	Х	X2	XS	kg/att.	kg/att.	kg/att.
RF2040-SS	12.70	11.10	13.60	9.50	19.10	3.60	5.20	4.10	9.10	19.30	17.60	19.80	0.003	0.006	0.001
RF2050-SS	15.90	14.30	15.90	11.90	23.80	5.20	6.80	5.10	11.10	24.20	22.00	24.60	0.006	0.012	0.002
RF2060-SS	21.45	17.50	19.10	14.30	28.60	5.20	8.70	6.10	14.70	31.50	28.20	30.60	0.017	0.034	0.003
RF2080-SS	27.80	22.20	25.40	19.10	38.10	6.80	10.30	8.10	19.10	40.70	36.60	40.50	0.032	0.064	0.007

- 1. Connecting links are clip type for sizes up to RF2060-SS, and cotter type for RF2080-SS, all GK-1 attachments are cotter type.
- 2. R-Roller is not available with GK-1 attachment.
- 3. Special attachments are available on request.
- 4. Chain with S type roller is indicated as RF2040S-SS.
- 5. Chain with R type roller is indicated as RF2040R-SS.

ANSI Double Pitch SS Hollow Pin (HP) Chain

Dimensions in mm

													Dimensi	ons in mm
								Pin			Link I	Plate	Approx	Mass
TSUBAKI	Pi	itch	Inner Width	S Bush	R Roller	Diameter	Hollow Pin	Length	Length	Length	Thickness	Height	S Bush	R Roller
Chain No.		р	b1	d1	d4	d2	d8	Lı	L2	L	T	Н	kg/m	kg/m
RF2040-HP-SS	25.40	(1")	7.95	7.92	15.88	5.68	4.00	8.00	9.50	19.10	1.50	12.00	0.46	0.82
RF2050-HP-SS	31.75	(1 1/4")	9.53	10.16	19.05	7.22	5.12	10.05	11.65	23.40	2.00	15.00	0.75	1.21
RF2060-HP-SS	38.10	(1 1/2")	12.70	11.91	22.23	8.38	5.99	12.55	14.25	28.70	2.40	17.20	1.38	2.06
RF2080-HP-SS	50.80	(2")	15.88	15.88	28.58	11.38	8.02	16.25	17.80	35.70	3.20	23.00	1.80	2.81

- 1. Chain with S type bush is indicated as RF2040S-HP-SS.
- 2. Chain with R type roller is indicated as RF2040R-HP-SS.

STOCK SPECIALTY ATTACHMENT CHAIN

Can Processing Industry

Fig. 27 RS60-2 AS Special

Book Binding Industry

Fig. 29 RS12B Special Extended Pin

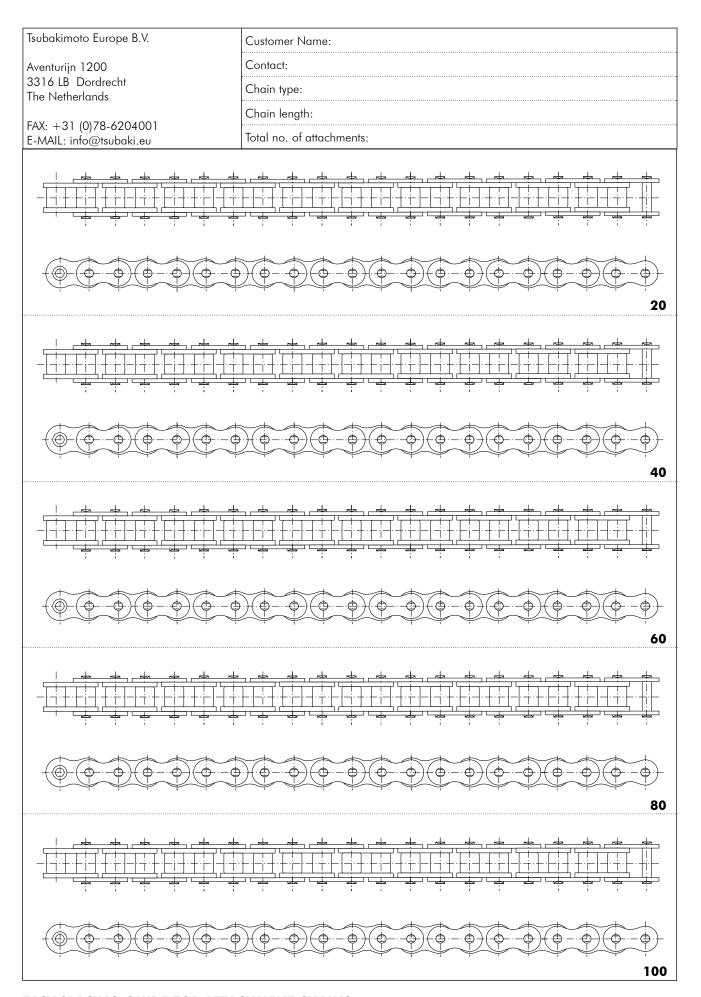
Packaging Industry

Fig. 31 RS50 and RF2050 Special Extended Pin

Packaging Industry

Fig. 28 RS35 and RS40 Special WA

Packaging Industry


Fig. 30 RS08B and RS10B Gripper Chain

Automotive and Electronics Industry

Fig. 32 RF2030 VRP to RF2080 VRP Double Plus Chain

TSUBAKI ATTACHMENT CHAIN LAYOUT SHEET

EASY SPACING GUIDE FOR ATTACHMENT CHAINS

TEMPERATURE SELECTION METHOD

This selection method is for chains that may experience strength degradation from temperature. Additionally, lubrication should be carried out using a suitable lubricant according to the operating temperatures.

High Temperature

When chains are used in high temperatures, the following problems may occur:

- Increased wear due to decreased hardness.
- Poor articulation and increased wear due to lubricant deterioration and carbonization.
- Stiff joints and increased wear due to oxide scale formation.
- Increased elongation due to softening.
- Decreased strength.

To prevent lubricant deterioration at high temperatures, use a special lubricant.

When chains are used in temperatures above $+250^{\circ}\text{C}$, pay special attention to the composition and heat-treatment of the chain. The most popular type of chain for high temperature is SS specification, which is made of 304 equivalent stainless steel and has a maximum working temperature of $+650^{\circ}\text{C}$ at low speeds. However, to maintain an adequate safety margin at a high temperature like this, we suggest NS specification chain. NS chain is made of 316 stainless steel, which contains molybdenum and less carbon. NS specification has worked at low speed in environments up to $+700^{\circ}\text{C}$.

If your operation runs at temperatures higher than $+400^{\circ}$ C, consult Tsubaki before making your chain selection. Production methods and materials may be specially adapted for your application.

Low Temperature

When chains are used in low temperatures, the following problems may occur:

- Decreased shock strength due to low-temperature brittleness.
- Lubricant solidification.
- Stiff joints caused by frost or ice adhesion.

Two types of chain are especially useful at lower temperatures. KT specification chain is specially heat-treated to withstand very cold environments. SS specification chain, which is made of 304 equivalent stainless steel, may also be used at low temperatures. Low-temperature brittleness does not occur in austenitic stainless steel.

These chains cannot fix the problems of solidification of the lubricant or stiff joints caused by frost or ice. Use cold-temperature oil or grease and apply it to the inner clearances and the outside of the chain.

Standard engineered plastic chain can be run at temperatures between -20°C and +80°C. At higher temperatures, it may become soft and not keep its shape; at lower temperatures it may become brittle

	Standard R	oller Chain		
Temperature	upto 1" pitch	1" pitch and over	KT Cold Resistant Chain*	SS, NS, AS Chain
Below -60°C	-	-	unusable	-
-60°C to -50°C	-	-	MAL / 2	-
-50°C to -40°C	-	unusable	MAL / 1.5	-
-40°C to -30°C	unusable	MAL / 4	MAL	-
-30°C to -20°C	MAL / 4	MAL / 3	MAL	#
-20°C to -10°C	MAL / 3	MAL / 2	MAL	MAL
-10°C to +60°C	MAL	MAL	MAL	MAL
+60°C to +150°C	MAL	MAL	unusable	MAL
+150°C to $+200$ °C	MAL / 1.3	MAL / 1.3	-	MAL
+200°C to +250°C	MAL / 2	MAL / 2	-	MAL
+250°C to +400°C	unusable	unusable	-	MAL
+400°C to +500°C	-	-	-	#
+500°C to +600°C	-	-	-	-
+600°C to +700°C	-	-	-	-
above +700°C	-	-	-	-

Notes:

The ambient temperature is different from the temperature of the roller chain itself.

 $\mathsf{MAL} = \mathsf{Maximum} \ \mathsf{Allowable} \ \mathsf{Load}. \ \mathsf{For} \ \mathsf{details} \ \mathsf{contact} \ \mathsf{Tsubaki}.$

Please consult TSUBAKI for more detailed information.

^{*} KT Cold Resistant Chain: Made to order.

CORROSION RESISTANCE GUIDE

☆☆ Highly corrosion resistant

☆ Partially corrosion resistant

× Not corrosion resistant

Not tested

Substance	Concentration	Temp. °C	SS	AS	PC/P
Acetic Acid	10%	20	☆☆	₩₩	☆☆
Acetone		20	☆☆	ታ ታ	☆☆
Alcohol			ሴ ሴ	ታ ታ	☆ ☆
Aluminum Sulfate	Saturated	20	**	×	-
Ammonia Water		20	**	**	**
Ammonium Chloride	50%	Boiling point	☆	×	-
Ammonium Nitrate	Saturated	Boiling point	☆☆		☆
Ammonium Sulfate	Saturated	20	☆☆	☆	-
Beer		20	☆☆	ታ ታ	☆☆
Benzene		20	☆☆	\$\$	\$\$
Boric Acid	50%	100	☆☆	ታ ታ	-
Butyric Acid		20	☆☆	##	☆☆
Calcium Chloride	Saturated	20	☆	×	☆
Calcium Hydroxide	20%	Boiling point	ታ ታ	₩	☆☆
Calcium Hypochlorite	11-14%	20	☆☆	×	×
Carbonated water			☆☆	##	-
Carbon Tetrachlorite (dry)		20	☆☆	ታ ታ	##
Chlorinated Water			×	×	×
Chlorine Gas (dry)		20	☆	×	-
Chlorine Gas (moist)		20	×	×	-
Chromic Acid	5%	20	☆☆	☆	×
Citric Acid	50%	20	☆☆	ជជ	-
Coffee		Boiling point	☆☆	##	☆☆
Creosote		20	☆☆	ታ ታ	-
Developing Solution		20	☆☆	☆	☆☆
Ethyl Ether		20	☆☆	☆☆	☆☆
Ferric Chloride	5%	20	☆	×	-
Formalin	40%	20	☆☆	##	-
Formic Acid	50%	20	☆☆	₩ ₩	×
Fruit Juice	55,7	20	∴ ^ ^ ☆☆	☆	###
Gasoline		20	☆☆		☆☆
Glycerol		20	☆☆	##	☆☆
Honey		20	☆☆	## ##	☆☆
Hydrochloric Acid	2%	20	×	×	×
Hydrogen Peroxide	30%	20			×
Hydrogen Sulfide (dry)	30%	20	₩ ₩₩	☆ ☆☆	
Hydrogen Sulfide (moist)			×	×	公立 ×
Hydroxybenzene		20			
Kerosene		20	## ***	₩	×
		20	☆☆	☆☆	-
Ketchup	10%	20	☆☆	₩	
Lactic Acid	10%	20	☆☆	☆	☆☆
Lard	1000/	20	**	☆☆	
Linseed Oil	100%	20	☆☆	☆ ^ ^	☆☆
Malic Acid	50%	50	☆☆	##	☆☆
Mayonnaise		20	☆☆	☆	☆☆
Milk		20	☆☆	₩₩	☆☆

SS: 304 SS Series PC: Poly-Steel Chain
AS: 600 AS Series

Key:

CORROSION RESISTANCE GUIDE

Substance	Concentration	Temp. °C	SS	AS	PC/P
Nitric Acid	5%	20	\$\$	☆	×
Vitric Acid	65%	20	☆☆	×	×
Nitric Acid	65%	Boiling point	☆	×	×
Oil (Plant, Mineral)		20	\$\$	**	**
Oleic Acid		20	**	**	**
Oxalic Acid	10%	20	**	☆	-
Paraffin		20	አ አ		ታ ታ
Petroleum		20	ታ ታ		☆☆
Phosphoric Acid	5%	20	☆☆	☆	×
Phosphoric Acid	10%	20	☆	☆	×
Picric Acid	Saturated	20	☆☆	☆☆	-
Potassium Bichromate	10%	20	ታ ታ	አ አ	☆☆
Potassium Chloride	Saturated	20	አ አ	☆	-
Potassium Hydroxide	20%	20	\$\$	**	☆☆
Potassium Nitrate	25%	20	☆☆	☆☆	☆☆
Potassium Nitrate	25%	Boiling point	☆☆	×	-
Potassium Permanganate	Saturated	20	☆☆	☆☆	-
Sea-Water		20	☆	×	☆
Soap-and-Water-Solution		20	₩₩	**	☆☆
Sodium Carbonate	Saturated	Boiling point	ŵ☆	☆☆	-
Sodium Chloride	5%	20	☆☆	☆	☆☆
Sodium Cyanide		20	☆☆	-	-
Sodium Hydrocarbonate		20	☆☆	☆☆	**
Sodium Hydroxide	25%	20	☆☆	☆☆	☆☆
Sodium Hypochlorite	10%	20	×	×	×
Sodium Perchlorate	10%	Boiling point	☆☆	×	-
Sodium Sulfate	Saturated	20	☆☆	☆☆	
Sodium Thiosulfate	25%	Boiling point	☆☆	☆☆	-
Soft Drink		20	☆☆	☆☆	☆☆
Stearic Acid	100%	Boiling point	×	×	×
Sugar Solution	1.00,0	20	☆☆	☆☆	☆☆
Sulfuric Acid	5%	20	×	×	×
Sulfur Dioxide (moist)	370	20	☆☆	×	
Synthetic Detergent		20	☆☆	☆☆	☆☆
Syrup			☆☆	☆☆	☆☆
artaric Acid	10%	20	☆☆	☆☆	## ##
- urpentine	1070	35	☆☆	☆☆	AA
/arnish			## ☆☆	## ##	
/egetable Juice		20	## ##	## ##	<u>-</u> ☆☆
		20			
/inegar Vater		20	☆☆	☆☆	☆☆
		20	☆☆	☆☆	☆☆
Vhiskey			☆☆	☆☆	☆☆
Vine Vine Chlorida	E00/	20	☆☆	☆☆	☆☆
inc Chloride	50%	20	☆ ☆	×	☆
inc Sulfate	Saturated	20	☆☆	## * * *	-
Vine		20	☆☆	☆☆	☆☆
Zinc Chloride	50%	20	-	☆	☆
Zinc Sulfate	25%	20	☆☆	☆☆	×